6.012 - Microelectronic Devices and Circuits

Lecture 21 - Diff-Amp Anal. II: Output Stages - Outline

- Announcements

DP: Get help before the Thanksgiving break. It's due Friday, Dec. 4
On Stellar: Write-up on the cascode connection posted under Lec. 21
Lee Load and Current Mirror Load write-ups posted under Lec. 20.

- Review - Non-linear and Active Loads

Maximum gain: $\mathrm{A}_{\mathrm{v}, \max } \propto \mathrm{V}_{\mathrm{A}, \text { eff }} /\left(\mathrm{V}_{\mathrm{Gs}}-\mathrm{V}_{\mathrm{T}}\right)_{\text {min }}$ for MOS; $\propto \mathrm{V}_{\mathrm{A}, \text { eff }} / \mathrm{V}_{\text {themal }}$ for BJT
Lee Load, Current Mirror: foils on analysis of CM in DP

- Specialty Stages - useful transistor pairings

Source-coupled pairs
The Marvelous Cascode: Postponed until Lecture 22
Push-pull or Totem Pole output stages

- Performance metrics - continuing down the list

Output resistance: Driving a load
DC off-set on output: High impedance nodes; feedback connections
Power dissipation: Add up currents from voltage supplies

Achieving the maximum gain: Comparing linear

 resistors, current sources, and active loadsMaximum Gains

Linear resistor loads

Current source loads

Active loads
Difference mode

Common mode
Observations/Comments:

MOSFET (SI) Bipolar-like

(w. and w.o. velocity sat.) (Sub- V_{T} MOS and BJT)

$$
\begin{array}{ll}
\leq \frac{2\left[I_{D} R_{S L}\right]_{\max }}{\left[v_{G S}-V_{T}\right]_{\min }} & \leq \frac{\left[I_{C} R_{S L}\right]_{\max }}{n V_{t}} \\
\leq \frac{2 V_{A, e f f}}{\left[v_{G S}-V_{T}\right]_{\min }} & \leq \frac{V_{A, e f f}}{n V_{t}}
\end{array}
$$

- Non-linear (current source) loads typically yield much higher gain than linear resistors, i.e. $V_{A, \text { eff }} \gg\left[I_{D} R_{S L}\right]_{\text {max }}$.
- The bias point is not as important to BJT-type stage gain.
- An SI MOSFET should be biased just above threshold for highest gain.
- For active loads what increases $A_{v d}$, decreases $A_{v c}$.
- Making L larger increases V_{A} proportionately, but at the cost of speed.

Achieving the maximum gain: $\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)_{\min }=$?

For SI-MOSFETs, maximizing the voltage gain (A_{v} or A_{vd}) requires minimizing $\left(\mathrm{V}_{\mathrm{Gs}}-\mathrm{V}_{\mathrm{T}}\right)$. What is the limit?

Sub - threshold :

$$
\left|\frac{A_{v}}{V_{A}}\right|=\frac{1}{n V_{t}}
$$

Strong inversion :

$$
\left|\frac{A_{v}}{V_{A}}\right|=\frac{2}{\left(V_{G S}-V_{T}\right)}
$$

A_{v} / V_{A} is a smooth curve, so clearly $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)_{\text {min }}>2 \mathrm{nV}_{\mathrm{t}}$.

Note: $\mathrm{n}=1.25$ was assumed.

Active Loads: The current mirror load

Large differential-mode gain, small common-mode gain.
Also provides high gain conversion from doubleended to single-ended output.

The circuit is no longer symmetrical, so half-circuit techniques can not be applied. The full analysis is found in the course text. We find:

Difference-mode inputs

$$
v_{o u t, d}=\frac{2 g_{m 3}}{\left(g_{o 2}+g_{o 4}+g_{e l}\right)} v_{i d} / 2
$$

Active Loads: The current mirror load, cont.

Common-mode inputs

$$
v_{o u t, c}=\frac{g_{o b}}{2 g_{m 2}} v_{i c}
$$

With both inputs:

$$
v_{o u t}=\frac{2 g_{m 3}}{\left(g_{o 2}+g_{o 4}+g_{e l}\right)} \frac{\left(v_{i n 1}-v_{i n 2}\right)}{2}-\frac{g_{o b}}{2 g_{m 2}} \frac{\left(v_{i n 1}+v_{i n 2}\right)}{2}
$$

Note: In D.P. the output goes to the gate of a BJT; g_{el} matters.

Active Loads: A current mirror load variant (D.P. version)

In the design problem we have a current mirror stage that is not biased by a current source, but rather by the preceding stage*. It thus looks like that on the right.

We can do an LEC analysis of this circuit fairly easily. We start with the LEC for the left side and find $v_{\text {inner }}$:

* Notice that it is possible to make the bias currents in the two legs of the mirror $\left(Q_{1} / Q_{3}\right.$ and $\left.Q_{2} / Q_{4}\right)$

Active Loads: A current mirror load variant, cont.

The left side LEC gives:

$$
v_{i n n e r}=\frac{-g_{m 3}}{\left(g_{o 3}+g_{o 1}+g_{m 1}\right)}\left(v_{i c}+\frac{v_{i d}}{2}\right)
$$

$$
\begin{aligned}
& \text { Note: Make } g_{\mathrm{m} 1}=g_{\mathrm{m} 3}, \\
& g_{\mathrm{m} 2}=g_{\mathrm{m} 4}, g_{\mathrm{o} 1}=g_{\mathrm{o} 3}, \\
& \text { and } g_{\mathrm{o} 2}=g_{\mathrm{o} 4}
\end{aligned}
$$

Next we analyze the right side LEC:

This then gives us $\mathrm{v}_{\text {out }}$:
LEC for the right side

$$
\begin{aligned}
& v_{o u t}=\frac{-g_{m 4}}{\left(g_{o 4}+g_{o 2}+g_{e l}\right)}\left(v_{i c}-\frac{v_{i d}}{2}\right)+\frac{-g_{m 2}}{\left(g_{o 4}+g_{o 2}+g_{e l}\right)} \frac{-g_{m 3}}{\left(g_{o 3}+g_{o 1}+g_{m 1}\right)}\left(v_{i c}+\frac{v_{i d}}{2}\right) \\
&=\frac{g_{m 4}}{\left(g_{o 4}+g_{o 2}+g_{e l}\right)} \frac{v_{i d}}{2}\left[1+\frac{g_{m 3}}{\left(g_{o 3}+g_{o 1}+g_{m 1}\right)}\right]-\frac{g_{m 4}}{\left(g_{o 4}+g_{o 2}+g_{e l}\right)} v_{i c}\left[1-\frac{g_{m 3}}{\left(g_{o 3}+g_{o 1}+g_{m 1}\right)}\right] \\
& \approx \frac{2 g_{m 4}}{\left(2 g_{o 4}+g_{e l}\right)} \frac{\left(v_{i n 1}-v_{i n 2}\right)}{2}-\frac{g_{m 4}}{\left(2 g_{o 4}+g_{e l}\right)} \frac{2 g_{o 1}}{g_{m 1}} \frac{\left(v_{i n 1}+v_{i n 2}\right)}{2} \\
& \mathbf{A}_{\mathrm{vd}} \approx 1
\end{aligned}
$$

An aside: More on the design problem CM stage

Transistor \mathbf{Q}_{13} does not have a companion on the left side of the second DP gain stage (the Current Mirror). If we ignore the Early effect for the large signal biasing analysis, as you have been told to do, this is fine. However, strictly speaking, it is best to maintain symmetry and thus you should add a companion transistor, $Q_{13^{\prime}}$, as shown to the right.

Specialty Pairings: The Source-coupled Pair

Two coupled common-source stages
Large differential gain
Common-mode rejection
Easy to cascade
Easy to bias

Discussed in Lecture 19.

Specialty Pairings: The Cascode (postponed until Lec. 22)

Common-source stage followed by a common gate stage
Common-source voltage gain Very large output resistance Improved high frequency performance

Specialty Pairings: The Push-pull or Totem Pole Output

A stacked pair of complementary emitter- or source-followers
Large input resistance Voltage gain near one
Small output resistance Low quiescent power

Specialty pairings: Push-pull or Totem Pole Output Pairs

The limitations of using a simple follower stage* output:

- Using a single source follower as the output stage must be biased with a relatively large drain current to achieve a large output voltage swing, which in turn dissipates a lot of quiescent power.

Specialty pairings: Push-pull or Totem Pole, cont.

- A p-MOS follower solves the negative swing problem, but has its own positive swing problem.
 IBIAS flows
through load.

Positive vout swing limited

- The solution is to combine the two in a totem pole stack (and drive and bias them by the preceding stage).
 off as Q_{2} turns on, and visa versa.

Specialty pairings: Push-pull or Totem Pole, cont.

Comments/Observations:

- The output resistance is largest around $v_{\text {OUt }}=0$. Here both Q_{2} and Q_{5} are active and the output resistance is:

- $\left|\mathbf{v}_{\text {out }}\right|$ vs $\left|\mathbf{v}_{\text {IN }}\right|$ is fairly linear over a wide range (see right);
$\left|\mathrm{v}_{\mathrm{GS}}\right|$ increases slowly with $\left|\mathrm{v}_{\mathrm{IN}}\right|$.

$$
r_{\text {out }} \approx \frac{1}{g_{m 2}+g_{m 5}}
$$

- One must always make $\mathrm{K}_{2} / \mathrm{K}_{3}=\mathrm{K}_{5} / \mathrm{K}_{4}$, and in the typical design $K_{3}=K_{4}$, and $K_{2}=K_{5}$. The bias current of Q_{2} and Q_{5} is set by $I_{\text {BIAS }}$:

$$
I_{D 2}=\left|I_{D 5}\right|=\left(K_{2} / K_{3}\right) I_{B I A S}
$$

Specialty pairings: Push-pull or Totem Pole, cont.

Voltage gain:

- The design problem uses a bipolar totem pole. The gain and linearity of this stage depend on the bias level of the totem pole. The gain is higher for with higher bias, but the power dissipation is also.

-1.5 V

To calculate the large signal transfer characteristic of the bipolar totem pole we begin with $\mathrm{v}_{\text {Out }}$:

$$
v_{\text {OUT }}=R_{L}\left(-i_{E 20}-i_{E 21}\right)
$$

The emitter currents depend on $\left(v_{I N}-v_{\text {OUT }}\right)$:

$$
i_{E 20}=-I_{E 20} e^{\left(v_{I N}-v_{\text {OUT }}\right) / V_{t}}, \quad i_{E 21}=I_{E 21} e^{-\left(v_{I N}-v_{\text {OUT }}\right) / V_{t}}
$$

Putting this all together, and using $I_{E 21}=-I_{E 20}$, we have:

$$
\begin{aligned}
v_{\text {out }} & =R_{L} I_{E 20}\left(e^{\left(v_{\text {in }}-v_{\text {out }}\right) / V_{t}}-e^{-\left(v_{\text {in }}-v_{\text {out }}\right) / V_{t}}\right) \\
& =2 R_{L} I_{E 20} \sinh \left(v_{\text {in }}-v_{\text {out }}\right) / V_{t}
\end{aligned}
$$

We can do a spread-sheet solution by picking a set of values for ($v_{I N}-v_{\text {OUT }}$), using the last equation to calculate the $v_{\text {OUT }}$, using this $v_{\text {OUT }}$ to calculate $v_{I N}$, and finally plotting $v_{\text {OUT }}$ vs $v_{I N^{*}}$ The results are seen on the next slide.

Voltage gain, cont.:

- With a 50Ω load and for several different bias levels we find:

Specialty pairings: Push-pull or Totem Pole in Design Prob.

Comments/Observations:

- The D.P. output stage involves four emitter follower building blocks arranged as two parallel cascades of two emitter follower stages each.
- Driving the totem pole in this manner results in a much larger output voltage range than is obtained by using a single follower as was done in our earlier examples.

NOTE: Designing with this output requires paying special attention to the biasing, and calculating the input and output resistances.

Specialty pairings: Push-pull or Totem Pole in D.P., cont.

Biasing the output stages: getting the currents right

Combining everything: $\quad I_{\text {BIAS2 }} / I_{\text {BIAS3 }}=\left(\beta_{p}+1\right) /\left(\beta_{n}+1\right) \approx \beta_{p} / \beta_{n}$

Specialty pairings: Push-pull or Totem Pole in D.P., cont.

Biasing the output stages: getting the voltages right

Specialty pairings: Push-pull or Totem Pole in D.P., cont.

Operation: The npn follower supplies current when the input goes positive to push the output up, while the pnp follower sinks current when the input goes negative to pull the output down.

NOTE: Near $\mathrm{v}_{\text {in }}=0$ we have two paths in parallel, and this must be considered when finding $r_{\text {in }}$ and $r_{\text {out }}$.

Specialty pairings: Push-pull or Totem Pole in D.P., cont.

 The input resistance of the output stages as seen by the Current MirrorWe will make the approximation that the two emitter-follower paths can be modeled as being in parallel for purposes of calculating the input resistance.

Note: $r_{\text {in }}$ is smallest around $v_{\text {in }}=0$, so this is a worst-case estimate.

Specialty pairings: Push-pull or Totem Pole in D.P., cont.

The output resistance of the amplifier as seen by the 50Ω load
We will make the approximation that the two emitter-follower paths can be modeled as being in parallel for purposes of calculating the output resistance.

Note: $r_{\text {out }}$ is largest around $v_{\text {out }}=0$, so this is a worst-case estimate.

Specialty pairings: Push-pull or Totem Pole in D.P., cont.

Reviewing the input and output resistances of an emitter follower:

$r_{i n}=r_{\pi}+(\beta+1)\left(r_{l}\left\|r_{o}\right\| r_{\text {Bias }}\right)$
$\approx r_{\pi}+(\beta+1) r_{l}$

Note:

- Looking in the resistance is multiplied by ($\beta+1$); looking back it is divided by ($\beta+1$).

Specialty pairings: Push-pull or

 Totem Pole in D.P., cont.Reviewing the voltage gain of an emitter follower:

$v_{\text {out }}=(\beta+1) i_{b}\left(r_{l}\left\|r_{o}\right\| r_{\text {Bias }}\right)$

$$
v_{i n}=i_{b} r_{\pi}+(\beta+1) i_{b}\left(r_{l}\left\|r_{o}\right\| r_{\text {Bias }}\right)
$$

$$
A_{v}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{(\beta+1)\left(r_{l}\left\|r_{o}\right\| r_{\text {Bias }}\right)}{r_{\pi}+(\beta+1)\left(r_{l}\left\|r_{o}\right\| r_{\text {Bias }}\right)}
$$

$$
\approx \frac{(\beta+1) r_{l}}{r_{\pi}+(\beta+1) r_{l}}
$$

Note: The voltage gains of the third-stage emitter followers $\left(Q_{17}\right.$ and $\left.Q_{18}\right)$ will likely be very close to one, but that of the stage-four followers might be noticeably less than one.

DC off-set at the output of an Operational Amplifier:

DC off-set:

The node between Q_{12} and Q_{13} is a high impedance node whose quiescent voltage can only be determined by invoking symmetry.*

In any practical Op Amp, a very small differential input, $\mathrm{v}_{\mathrm{IN} 1}-\mathrm{v}_{\mathrm{IN} 2}$, is require to make the voltage on this node (and $\mathrm{V}_{\mathrm{OUT}}$) zero.

DC off-set at the output of an Op Amp, cont:

 DC off-set:The transfer characteristic, $v_{\text {OUT }}$ vS ($v_{\text {IN } 1}-v_{\text {IN2 }}$), will not in general go through the origin, i.e.,
$v_{\text {OUT }}=A_{V d}\left(v_{\text {IN } 1}-v_{\text {IN2 }}\right)+V_{\text {OFFSET }}$
In the example in the figure $A_{v d}$ is -2×10^{6}, and $V_{\text {OFFSET }}$ is 0.1 V .

In a practice, an Op Amp will be used in a feed-back circuit like the example shown to the left, and the value of $\mathrm{v}_{\text {OUT }}$ with $\mathrm{v}_{\mathrm{IN}}=0$ will be quite small. For this example (in which $A_{v d}=-2 \times 10^{6}$, and $V_{\text {OFFSET }}=$ 0.1 V) $\mathrm{v}_{\text {out }}$ is only $0.1 \mu \mathrm{~V}$.

Power dissipation calculation

A constraint on the bias currents is the total power dissipation specification of 8.5 mW . This means that the total bias current must be $\approx 2.8 \mathrm{~mA}$ or less (i.e, $3 \mathrm{~V} \times 2.8 \mathrm{~mA} \approx 8.5 \mathrm{~mW}$).

$$
\begin{gathered}
P_{Q}=\left(I_{A}+I_{B}+I_{C}+I_{D}+I_{E}+I_{F}+I_{G}\right) \times 3 \text { Volts } \\
I_{A}+I_{B}+I_{C}+I_{D}+I_{E}+I_{F}+I_{G} \leq 2.8 \mathrm{~mA}
\end{gathered}
$$

6.012 - Microelectronic Devices and Circuits Lecture 21 - Diff-Amp Analysis II - Summary

- Active loads - Lee load, Current mirror

New CM analysis foils

- Specialty stages - useful pairings

Source coupled pairs: MOS
Cascode: Postponed until Lecture 22
Push-pull output: Emitter followers in vertical chain
Very low output resistance
Shared duties for positive and negative output swings

- Diff Amp Metrics

Output resistance: Largest about zero; view as followers in parallel DC off-set on output: Nulled out by slight differential mode input
Power consumption: Add up the current from the supplies

Happy Thanksgiving

MIT OpenCourseWare
|http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

