6.012 - Microelectronic Devices and Circuits
 Lecture 7 - Bipolar Junction Transistors - Outline

- Announcements

First Hour Exam - Oct. 7, 7:30-9:30 pm; thru 10/2/09, PS \#4

- Review/Diode model wrap-up

Exponential diode: $\mathrm{i}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{AB}}\right)=\mathrm{I}_{\mathrm{S}}\left(\mathrm{e}^{\text {qVAB } / k T}-1\right) \quad$ (holes) \quad (electrons)

$$
\text { with } I_{S} \equiv A q n_{i}^{2}\left[\left(D_{h} / N_{D n} w_{n}^{*}\right)+\left(D_{e} / N_{A p} w_{p}^{*}\right)\right]
$$

Observations: Saturation current, I_{S}, goes down as doping levels go up Injection is predominantly into more lightly doped side
Asymmetrical diodes: the action is on the lightly doped side
Diffusion charge stores; diffusion capacitance: (Recitation topic)
Excess carriers in quasi-neutral region $=$ Stored charge

- Bipolar junction transistor operation and modeling

Bipolar junction transistor structure
Qualitative description of operation: 1. Visualizing the carrier fluxes
(using npn as the example) 2 . The control function
3. Design objectives

Operation in forward active region, $\mathrm{v}_{\mathrm{BE}}>0, \mathrm{v}_{\mathrm{BC}}<0$: $\delta_{\mathrm{E}}, \delta_{\mathrm{B}}, \beta_{\mathrm{F}}, \mathrm{I}_{\mathrm{ES}}$

Biased p-n junctions: current flow, cont.

The saturation current of three diode types:

I_{s} 's dependence on the relative sizes of w and $L_{\text {min }}$
Short-base diode, $w_{n} \ll L_{h}, w_{p} \ll L_{e}$:

$$
\left.\begin{array}{l}
J_{\mathrm{h}}\left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{q} \frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{D}}} \frac{D_{h}}{\left(w_{n}-x_{n}\right)}\left[\mathrm{e}^{\mathrm{q}_{\triangle B} / k T}-1\right] \\
J_{\mathrm{e}}\left(-\mathrm{x}_{\mathrm{p}}\right)=\mathrm{q} \frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{Ap}}} \frac{D_{e}}{\left(w_{p}-x_{p}\right)}\left[\mathrm{e}^{\mathrm{q}_{\triangle \mathrm{AB}} / k T}-1\right]
\end{array}\right\}
$$

$$
i_{\mathrm{D}}=\operatorname{Aqn}_{\mathrm{i}}^{2}\left[\frac{D_{h}}{N_{D n}\left(w_{n}-x_{n}\right)}+\frac{D_{e}}{N_{A p}\left(w_{p}-x_{p}\right)}\right]\left[\mathrm{e}^{\mathrm{q}_{\mathrm{AB}} / k T}-1\right]
$$

Long-base diode, $w_{n} \gg L_{h}, w_{p} \gg L_{e}$:

General diode:

$$
\begin{aligned}
& i_{\mathrm{D}}=\operatorname{Aqn}_{\mathrm{i}}^{2}\left[\frac{D_{h}}{N_{D n} w_{n, \text { eff }}}\right.
\end{aligned}+\underbrace{\left.\frac{D_{e}}{N_{A p} w_{p, e f f}}\right]\left[\mathrm{e}^{\mathrm{qv}_{\mathrm{AB}} / k T}-1\right]}_{\text {Electron injection into } \mathrm{p} \text {-side }} \text { Hole injection into n-side } \quad \text {. }
$$

$$
\text { Note: } w_{n, \text { eff }} \equiv L_{h} \tanh \left(w_{n}-x_{n}\right), w_{p, \text { eff }} \equiv L_{e} \tanh \left(w_{p}-x_{p}\right)
$$

Asymmetrically doped junctions: an important special case

Current flow impact/issues

A p+-n junction ($\mathrm{N}_{\mathrm{Ap}} \gg \mathrm{N}_{\mathrm{Dn}}$):

$$
i_{\mathrm{D}}=\mathrm{Aqn}_{\mathrm{i}}^{2}\left[\frac{D_{h}}{N_{D n} w_{n, e f f}}+\frac{D}{N_{A p} w_{p, \text { eff }}}\right]\left[\mathrm{e}^{\mathrm{qV}_{\lambda B} / k T}-1\right] \approx \mathrm{Aqn}_{\mathrm{i}}^{2} \frac{D_{h}}{N_{D n} w_{n, e f f}}\left[\mathrm{e}^{\mathrm{q}_{\mathrm{V}_{A B} / k T}}-1\right]
$$

Hole injection into n -side
An $\mathrm{n}+-\mathrm{p}$ junction ($\mathrm{N}_{\mathrm{Dn}} \gg \mathrm{N}_{\mathrm{Ap}}$):
$i_{\mathrm{D}}=\operatorname{Aqn}_{\mathrm{i}}^{2}\left[\frac{D_{\mathrm{i}} /}{N_{D_{n}} w_{n, \text { eff }}}+\frac{D_{e}}{N_{A p} w_{p, e f f}}\right]\left[\mathrm{e}^{\mathrm{qv}_{A B} / k T}-1\right] \approx \mathrm{Aqn}_{\mathrm{i}}^{2} \frac{D_{e}}{N_{A p} w_{p, \text { eff }}}\left[\mathrm{e}^{\mathrm{q}_{A B} / k T}-1\right]$
Electron injection into p-side
Note that in both cases the minority carrier injection is predominately into the lightly doped side.

Note also that it is the doping level of the more lightly doped junction that determines the magnitude of the current, and as the doping level on the lightly doped side decreases, the magnitude of the current increases.

Two very important and useful observations!!

Biased p-n junctions: excess minority carrier (diffusion) charge stores

Diffusion charge store, and diffusion capacitance:

Using example of asymmetrically doped p+-n diode

Notice that the stored positive charge (the excess holes) and the stored negative charge (the excess electrons) occupy the same volume in space (between $\mathrm{x}=\mathrm{x}_{\mathrm{n}}$ and $\mathrm{x}=\mathrm{w}_{\mathrm{n}}$)!
$q_{A, D F}\left(v_{A B}\right)=A q\left[p^{\prime}\left(x_{n}\right)-p^{\prime}\left(w_{n}\right)\right] \frac{\left[w_{n}-x_{n}\right]}{2} \approx A q \frac{n_{i}^{2}}{N_{D n}}\left[e^{q v_{A B} / k T}-1\right] \frac{w_{n, e f f}}{2}$
The charge stored depends non-linearly on v_{AB}. As we did in the case of the depletion charge store, we define an incremental linear equivalent diffusion capacitance, $\mathrm{C}_{\mathrm{df}}\left(\mathrm{V}_{\mathrm{AB}}\right)$, as:

$$
\left.C_{d f}\left(V_{A B}\right) \equiv \frac{\partial q_{A, D F}}{\partial v_{A B}}\right|_{v_{A B}=V_{A B}} \approx A \frac{q^{2}}{2 k T} w_{n, e f f} \frac{n_{i}^{2}}{N_{D n}} e^{q v_{A B} / k T}
$$

Diffusion capacitance, cont.:

A very useful way to write the diffusion capacitance is in terms of the bias current, I_{D} :

$$
I_{D} \approx A q n_{i}^{2} \frac{D_{h}}{N_{D n} w_{n, e f f}}\left[e^{q V_{A B} / k T}-1\right] \approx A q n_{i}^{2} \frac{D_{h}}{N_{D n} w_{n, e f f}} e^{q V_{A B} / k T} \text { for } V_{A B} \gg k T
$$

To do this, first divide C_{df} by I_{D} to get:

Isolating C_{df}, we have:

$$
C_{d f}\left(V_{A B}\right) \approx \frac{w_{n, \text { eff }}^{2}}{2 D_{h}} \frac{q I_{D}\left(V_{A B}\right)}{k T}
$$ explicitly in this expression. Only the total current!

Comparing charge stores; small-signal linear equivalent capacitors:

Parallel plate capacitor

Depletion region charge store

$$
q_{A, P P}=A \frac{\varepsilon}{d} v_{A B}
$$

$$
\left.C_{p p}\left(V_{A B}\right) \equiv \frac{\partial q_{A, P P}}{\partial v_{A B}}\right|_{V_{A B}=V_{A B}}=\frac{A \varepsilon}{d}
$$

$$
\begin{aligned}
& q_{A, D P}\left(v_{A B}\right)=-A \sqrt{2 q \varepsilon_{S i}\left[\phi_{b}-v_{A B}\right] \frac{N_{A p} N_{D n}}{\left[N_{A p}+N_{D n}\right]}} \\
& C_{d p}\left(V_{A B}\right)=A \sqrt{\frac{q \varepsilon_{S i}}{2\left[\phi_{b}-V_{A B}\right]} \frac{N_{A p} N_{D n}}{\left[N_{A p}+N_{D n}\right]}}=\frac{A \varepsilon_{S i}}{w\left(V_{A B}\right)}
\end{aligned}
$$

QNR region diffusion charge store

$$
\begin{gathered}
q_{A B, D F}\left(v_{A B}\right) \approx A q n_{i}^{2} \frac{D_{h}}{N_{D n} w_{n, e f f}}\left[e^{q V_{A B} / k T}-1\right] \\
\begin{array}{c}
\text { Note: Approximate because we are } \\
\text { only accounting for the charge } \\
\text { store on the lightly doped side. }
\end{array} \\
C_{d f}\left(V_{A B}\right) \approx \frac{w_{n, e f f}^{2}}{2 D_{h}} \frac{q I_{D}\left(V_{A B}\right)}{k T}
\end{gathered}
$$

p -n diode: large signal model including charge stores

$q_{A B}$: Excess carriers on p-side + excess carriers on n -side + junction depletion charge.
small signal linear equivalent circuit

Moving on to transistors!

Amplifiers/Inverters: back to 6.002

An MOS amplifier or inverter:
the transistor is an
n-channel MOSFET

A bipolar amplifier or inverter:
the transistor is an npn BJT

npn BJT: Connecting with the n-channel MOSFET from 6.002

 A very similar behavior*, and very similar uses.

Input curve

Output family

* At its output each device looks like a current source controlled by the input signal.

How do we make a BJT?

Basic Bipolar Junction Transistor (BJT) - cross-section

Bipolar Junction Transistors: basic operation and modeling...

... how the base-emitter voltage, v_{BE}, controls the collector current, i_{C}

A good way to envision this is to think "carrier fluxes":

Bipolar Junction Transistors: the carrier fluxes through an npn

Our next task is to determine:
Given a structure, what are $\mathrm{i}_{\mathrm{E}}\left(\mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{CE}}\right), \mathrm{i}_{\mathrm{C}}\left(\mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{CE}}\right)$, and $\mathrm{i}_{\mathrm{B}}\left(\mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{CE}}\right)$?

Bipolar Junction Transistors: basic operation and modeling...
... how the base-emitter voltage, v_{BE}, controls the collector current, i_{C}

Bipolar Junction Transistors: basic operation and modeling...
\ldots how the base-emitter voltage, v_{BE}, controls the collector current, i_{C}

npn BJT: Forward active region operation, $\mathrm{v}_{\mathrm{BE}}>0$ and $\mathrm{v}_{\mathrm{BC}} \leq 0$

Currents:

npn BJT: Approximate model for $\mathrm{i}_{\mathrm{E}}\left(\mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{BC}}\right)$ and $\mathrm{i}_{\mathrm{C}}\left(\mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{BC}}\right)$ in forward active region, $\mathrm{v}_{\mathrm{BE}}>0, \mathrm{v}_{\mathrm{BC}}<0$

The emitter current, \mathbf{i}_{E}
Begin with the good current, the electron current into the base, i_{eE} :

$$
i_{e E}=-A q n_{i}^{2} \frac{D_{e}}{N_{A B} w_{B, e f f}}\left[e^{q V_{B E} / k T}-1\right]
$$

Next find the bad current, the hole current back into the emitter, i_{hE} :

$$
i_{h E}=-A q n_{i}^{2} \frac{D_{h}}{N_{D E} w_{E, e f f}}\left[e^{q V_{B E} / k T}-1\right]
$$

and write it as a fraction of i_{eE} :

$$
i_{h E}=\frac{N_{A B} w_{B, e f f}}{D_{e}} \frac{D_{h}}{N_{D E} w_{E, e f f}} i_{e E}=\delta_{E} i_{e E}
$$

npn BJT: Approximate forward active region model, cont.

The emitter current, i_{E}, cont.
In writing the last equation we introduced the emitter defect, δ_{E} :

$$
\delta_{E} \equiv \frac{i_{h E}}{i_{e E}}=\frac{D_{h}}{D_{e}} \cdot \frac{N_{A B}}{N_{D E}} \cdot \frac{w_{B, e f f}}{w_{E, e f f}}
$$

To finish for now with the emitter current, we write it, i_{E}, in terms of the emitter electron current, i_{eE} :

$$
i_{E}=i_{e E}+i_{h E}=\left(1+\frac{i_{h E}}{i_{e E}}\right) i_{e E}=\left(1+\delta_{E}\right) i_{e E}
$$

npn BJT: Approximate forward active region model, cont.

The collector current, i_{c}
The collector current is the electron current from the emitter, i_{eE}, minus the fraction that recombines in the base, $\delta_{\mathrm{B}} \mathrm{i}_{\mathrm{eE}}$:

$$
i_{C}=\left(1-\delta_{B}\right) i_{e E}
$$

To find the fraction that recombine, i.e. the base defect, δ_{B}, we note that we can write the total recombination in the base, $\delta_{\mathrm{B}} \mathrm{i}_{\mathrm{eE}}$, as:

$$
\delta_{B} i_{e E}=-A q \int_{0}^{w_{B}} \frac{n^{\prime}(x)}{\tau_{e B}} d x
$$

npn BJT: Approximate forward active region model, cont.

The base defect, δ_{B}
If the recombination in the base is small (as it is in a good BJT) then the excess electron concentration will be nearly triangular and we can say:

$$
\int_{0}^{w_{B}} n^{\prime}(x) d x \approx \frac{n^{\prime}(0) w_{B, e f f}}{2} \quad \text { and } \quad i_{e E} \approx-A q D_{e B} \frac{n^{\prime}(0)}{w_{B, e f f}}
$$

Thus

$$
\delta_{B}=\frac{-A q \int_{0}^{w_{B}} \frac{n^{\prime}(x)}{\tau_{e B}} d x}{i_{e E}} \approx \frac{-A q \frac{n^{\prime}(0) w_{B, e f f}}{2 \tau_{e B}}}{-A q D_{e B} \frac{n^{\prime}(0)}{w_{B, e f f}}}=\frac{w_{B, e f f}^{2}}{2 D_{e B} \tau_{e B}}=\frac{w_{B, e f f}^{2}}{2 L_{e B}^{2}}
$$

The collector current, \mathbf{i}_{c}, cont.
Returning to the collector current, i_{C}, we now want to relate it to the total emitter current:

$$
\begin{aligned}
& \left.\begin{array}{l}
i_{C}=-\left(1-\delta_{B}\right) i_{e E} \\
i_{E}=\left(1+\delta_{E}\right) i_{e E}
\end{array}\right\} \quad i_{C}=-\frac{\left(1-\delta_{B}\right)}{\left(1+\delta_{E}\right)} i_{E}=-\alpha_{F} i_{E} \\
& \quad \text { with } \alpha_{F} \equiv \frac{\left(1-\delta_{B}\right)}{\left(1+\delta_{E}\right)}
\end{aligned}
$$

npn BJT: Approximate forward active region model, cont.

So far... $\quad i_{E}=-\operatorname{Aqn}_{i}^{2}\left(\frac{D_{h}}{N_{D E} w_{E, e f f}}+\frac{D_{e}}{N_{A B} w_{B, e f f}}\right)\left[e^{q V_{B E} / k T}-1\right]$

$$
=-I_{E S}\left[e^{q V_{B E} k T}-1\right] \quad \text { with } \quad I_{E S}=\operatorname{Aqn}_{i}^{2}\left(\frac{D_{h}}{N_{D E} w_{E, e f f}}+\frac{D_{e}}{N_{A B} w_{B, e f f}}\right)
$$

...and we have:

$$
i_{C} \propto i_{E}: \quad i_{C}=-\alpha_{F} i_{E} \quad \text { with } \quad \alpha_{F} \equiv-\frac{i_{C}}{i_{E}}=\frac{\left(1-\delta_{B}\right)}{\left(1+\delta_{E}\right)}
$$

These relationships can be represented by a simple circuit model:

Note: $\mathrm{i}_{\mathrm{F}}=-\mathrm{i}_{\mathrm{E}}$.

$$
\begin{aligned}
& i_{E}=-i_{F} \quad \text { with } \quad i_{F}=I_{E S}\left(1-e^{q v_{B E} / k T}\right) \\
& i_{C}=\alpha_{F} i_{F} \quad \text { with } \quad \alpha_{F} \equiv-\frac{i_{C}}{i_{E}}=\frac{\left(1-\delta_{B}\right)}{\left(1+\delta_{E}\right)} \\
& i_{B}=-i_{E}-i_{C}=\left(1-\alpha_{F}\right) i_{F}
\end{aligned}
$$

Looking at this circuit and these expressions, it is clear that to make i_{B} small and $\left|i_{C}\right| \approx\left|i_{E}\right|$, we must have $\alpha_{F} \approx 1$. We look at this next.

npn BJT: Approximate forward active region model, cont.

npn BJT: What our model tells us about device design.

We have:

$$
\alpha_{F}=\frac{\left(1-\delta_{B}\right)}{\left(1+\delta_{E}\right)}
$$

and the defects, δ_{E} and δ_{B}, are given by:

$$
\delta_{E}=\frac{D_{h}}{D_{e}} \cdot \frac{N_{A B}}{N_{D E}} \cdot \frac{w_{B, e f f}}{w_{E, e f f}} \quad \text { and } \quad \delta_{B} \approx \frac{w_{B, e f f}^{2}}{2 L_{e B}^{2}}
$$

We want α_{F} to be as close to one as possible, and clearly the smaller we can make the defects, the closer α_{F} will be to one. Thus making the defects small is the essence of good BJT design:

$$
\begin{aligned}
\text { Doping: } & \text { npn with } N_{\mathrm{DE}} \gg N_{A B} \\
w_{B, e f f}: & \text { very small } \\
L_{e B}: & \text { very large and } \gg w_{B, e f f}
\end{aligned}
$$

npn BJT: Well designed structure (Large β_{F}, small δ_{E} and d_{B})

δ_{E} and δ_{B} are small and α_{F} is ≈ 1 when $N_{D E} \gg N_{A B}, w_{E} \ll L_{h E}, w_{B} \ll L_{e B}$
Excess Carriers: p', n'

Currents:

npn BJT,cont.: more observations about F.A.R. model

It is very common to think of i_{B}, rather than i_{E}, as the controlling current in a BJT. In this case we write i_{C} as depending on i_{B} :

$$
\left.\begin{array}{c}
i_{E}=-i_{F}=-I_{E S}\left[e^{q V_{B E} / k T}-1\right] \\
i_{C}=\alpha_{F} i_{F} \\
i_{B}=\left(1-\alpha_{F}\right) i_{F}
\end{array}\right]\left\{\begin{array}{l}
i_{C}=\frac{i_{B}=\left(1-\alpha_{F}\right) I_{E S}\left[e^{q V_{B E} / k T}-1\right]=I_{B S}\left[e^{q V_{B E} / k T}-1\right]}{\left(1-\alpha_{F}\right)} i_{B}=\beta_{F} i_{B} \\
i_{E}=-i_{C}-i_{B}=\left(\beta_{F}+1\right) i_{B} \\
\text { with } \quad \beta_{F} \equiv \frac{\alpha_{F}}{1-\alpha_{F}}=\frac{\left(1-\delta_{B}\right)}{\left(\delta_{E}+\delta_{B}\right)} \quad \text { and } \quad I_{B S} \equiv\left(1-\alpha_{F}\right) I_{E S}=\frac{I_{E S}}{\left(\beta_{F}+1\right)}
\end{array}\right.
$$

Two circuit models that fit this behavior are the following:

Note:
α_{F}
$=$
$=\frac{\beta_{F}}{\left(\beta_{F}+1\right)}$

npn BJT: Equivalent FAR models

$I_{B S}=I_{E S} /\left(\beta_{F}+1\right)$

A useful model using a break-point diode:

Clif Fonstad, 10/1/09

This is a very useful model to use when finding the bias point in a circuit.

npn BJT: The Ebers-Moll model

The forward model is what we use most, but adding the reverse model we cover the entire range of possible operating conditions.
Forward:

$$
\beta_{F}=\frac{\left(1-\delta_{\mathbf{B}}\right)}{\left(\delta_{E}+\delta_{\mathbf{B}}\right)}, \quad \alpha_{F}=\frac{\left(1-\delta_{\mathbf{B}}\right)}{\left(1+\delta_{E}\right)}
$$

$$
\delta_{E} \equiv \frac{i_{h E}}{i_{e E}}=\frac{D_{h}}{D_{e}} \cdot \frac{N_{A B}}{N_{D E}} \cdot \frac{w_{B, \text { eff }}}{w_{E, \text { eff }}}, \quad \delta_{B} \approx \frac{w_{B, \text { eff }}^{2}}{2 D_{e} \tau_{e}}=\frac{w_{B, \text { eff }}^{2}}{2 L_{e}^{2}}
$$

$\alpha_{R} i_{R}$

$$
I_{C S}=A q \operatorname{cRn}_{i}^{2}\left(\frac{D_{h}}{N_{D C} w_{C, e f f}}+\frac{D_{e}}{N_{A B} w_{B, e f f}}\right)
$$

$$
\beta_{R}=\frac{\left(1-\delta_{\mathbf{B}}\right)}{\left(\delta_{C}+\delta_{\mathbf{B}}\right)}, \quad \alpha_{R}=\frac{\left(1-\delta_{\mathbf{B}}\right)}{\left(1+\delta_{C}\right)}
$$

$$
\delta_{C} \equiv \frac{i_{h C}}{i_{e C}}=\frac{D_{h}}{D_{e}} \cdot \frac{N_{A B}}{N_{D C}} \cdot \frac{w_{B, e f f}}{w_{C, e f f}}
$$

$$
\delta_{B} \approx \frac{w_{B, e f f}^{2}}{2 D_{e} \tau_{e}}=\frac{w_{B, e f f}^{2}}{2 L_{e}^{2}}
$$

Note: $\mathrm{i}_{\mathrm{F}}=-\mathrm{i}_{\mathrm{E}}\left(\mathrm{v}_{\mathrm{BE}}, \mathbf{0}\right)$ and $i_{R}=-i_{C}\left(0, v_{B C}\right)$.

npn BJT: The Gummel-Poon model

Another common model can be obtained from the Ebers-Moll model

 is the Gummel-Poon model:

$$
\begin{aligned}
I_{S} & \equiv \frac{\beta_{F}}{\left(\beta_{F}+1\right)} I_{E S}=\frac{\beta_{R}}{\left(\beta_{R}+1\right)} I_{C S} \\
& =\alpha_{F} I_{E S}=\alpha_{R} I_{C S}
\end{aligned}
$$

Combined they form the Gummel-Poon model:

- Aside from the historical interest, another value this has for us in 6.012 is that it is an interesting exercise to show that the two forward circuits above are equivalent.

Lecture 7 - Bipolar Junction Transistors - Summary

- Review/Junction diode model wrap-up

Refer to "Lecture 6-Summary" for a good overview
Diffusion capacitance: adds to depletion capacitance ($p^{+}-$n example)
In asym., short-base diodes: $\mathrm{C}_{\mathrm{df}}\left(\mathrm{V}_{\mathrm{AB}}\right) \approx\left(\mathrm{q} \mathrm{I}_{\mathrm{D}} / \mathrm{kT}\right)\left[\left(\mathrm{w}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}\right)^{2} / \mathrm{D}_{\mathrm{h}}\right]$
(area doesn't enter expression!)

- Bipolar junction transistor operation and modeling

Clif Fonstad, 10/1/09

Currents (forward active): (npn example)

$$
\mathrm{i}_{\mathrm{E}}\left(\mathrm{~V}_{\mathrm{BE}}, 0\right)=-\mathrm{I}_{\mathrm{ES}}\left(\mathrm{e}^{q \mathrm{qVE} / \mathrm{kT}}-1\right)
$$

$$
\mathrm{i}_{C}\left(\mathrm{v}_{\mathrm{BE}}, 0\right)=-\alpha_{\mathrm{F}} \mathrm{i}_{\mathrm{E}}\left(\mathrm{v}_{\mathrm{BE}}, 0\right)
$$

$$
\text { with } \alpha_{F} \equiv\left[\left(1-\delta_{B}\right) /\left(1+\delta_{E}\right)\right]
$$

Emitter defect, $\delta_{\mathrm{E}} \equiv\left(\mathrm{D}_{\mathrm{h}} \mathrm{N}_{\mathrm{AB}} \mathrm{W}_{\mathrm{B}}{ }^{*} / \mathrm{D}_{\mathrm{e}} \mathrm{N}_{\mathrm{DE}} \mathrm{WW}_{\mathrm{E}}{ }^{*}\right)$ (ratio of hole to electron current across E-B junction) Base defect, $\delta_{\mathrm{B}} \equiv\left(\mathrm{w}_{\mathrm{B}}{ }^{2} / 2 \mathrm{~L}_{\mathrm{e}}{ }^{2}\right)$
, (fraction of injected electrons recombining in base)

$$
\text { Also, } i_{B}\left(v_{B E}, 0\right)=\left[\left(d_{E}+d_{B}\right) /\left(1+d_{E}\right)\right] i_{E}\left(v_{B E}, 0\right)
$$

$$
\text { and, } i_{C}\left(v_{B E}, 0\right)=b_{F} i_{B}\left(v_{B E}, 0\right)
$$

$$
\text { with } b_{F}{ }^{\circ} a_{F} /\left(1-a_{F}\right)=\left[\left(1-d_{B}\right) /\left(d_{E}+d_{B}\right)\right]
$$

MIT OpenCourseWare
|http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

