
 

     
 

       
           

            
   

              
 

         

           
                  

       
           

        
           

          
         

          

 

6.012 - Electronic Devices and Circuits 
Lecture 4 - p-n Junctions:  Electrostatics - Outline
 

• Review 
Poisson's equation for φo(x) given Nd(x) and Na(x): 

ε d2φo(x)/dx2 = q [ni {eqφo(x)/kT – e–qφo(x)/kT} – Nd(x) + Na(x)] 
Knowing φo(x), we have no(x) = ni eqφo(x)/kT and po(x) = ni e–qφo(x)/kT 

Slowly varying profiles: quasi-neutrality holds 
In n-type, for example, no(x) ≈ Nd(x) – Na(x), po(x) = ni 

2 /no(x) 
Given no and/or po, φo(x) = (kT/q)ln[no(x)/ni] = – (kT/q)ln[po(x)/ni] 

• Abrupt p-n junction in TE (electrostatics) 
Abrupt profile: Take as an example an abrupt p-n junction with 

Na(x) – Nd(x) ≡ NAp for x < 0 and Nd(x) – Na(x) ≡ NDn for x > 0 
Observe: 1. no(x) and po(x) depend exponentially on φo(x) 

2. φo(x) is insensitive to the details of the charge profile, ρ(x) 
Depletion approximation: 0 for x < –xp and x > xn 

Approximate net charge, ρ(x) ≈ – q NAp for –xp < x < 0 
q NDn for 0 < x < xn 

Integrate once to get E(x), and again to get φ(x)
 
Find xp and xn by fitting φo(x) to known ∆φ crossing junction
 

• Applying bias to a p-n junction (what happens?) 
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Non-uniform doping in thermal equilibrium 
Reviewing from Lecture 3: 

In a non-uniformly doped sample in TE we have: gL(x,t) = 0, 
Je(x) = 0, Jh(x) = 0, and ∂ / dt = 0. Also: n(x) = no(x) and p(x) = po(x). 
Applying these conditions to the two current density

equations gave: 

and 

! 

0 = qµeno(x)E(x) + qDe

dno(x)

dx
"

d#

dx
=

De

µe

1

no(x)

dno(x)

dx

! 

0 = qµh po(x)E(x) " qDh

dpo(x)

dx
#

d$

dx
= "

Dh

µh

1

po(x)

dpo(x)

dx

And Poisson’s equation became:
 

! 

"
d

2#(x)

dx
2

=
dE(x)

dx
=
$(x)

%
=

q

%
po(x) " no(x) + Nd (x) " Na (x)[ ]

In the end, we had three equations in our three remaining
unknowns, no(x), po(x), and φ(x). 
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Non-uniform doping in thermal equilibrium, cont. 

The first two equations can be solved by integrating to get: 

and 

! 

Ref :    "(x) = 0  at all  x  where   po(x) = no(x) = ni

! 

no(x) = nie

µe

De

" (x )

         po(x) = nie
#

µh

Dh

" (x )

Next use the Einstein relation:
 

! 

µh

Dh

=
µe

De

=
q

kT

! 

Note :   @ R.T.   q kT " 40 V
#1

  and  kT q " 25 mV

Using the Einstein relation we have: 

Finally, putting these in Poisson’s equation, a single equation 
for φ(x) in a doped semiconductor in TE materializes: 
! 

no(x) = nie
q" (x ) kT

and po(x) = nie
#q" (x ) kT

! 

d
2"(x)

dx
2

= #
q

$
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]
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  Doing the numbers: 
I. D to µ conversions, and visa versa 
To convert between D and µ it is convenient to say 25 mV,kT/q ≈ 

in which case q/kT ≈ 40 V-1: 
17˚C/62˚F 

Example 1: µe = 1600 cm2/V-s, µh = 600 cm2/V-s 

! 

De = µe q kT( ) =1600 /40 = 40 cm
2
/s

Dh = µh q kT( ) = 600 /40 =15 cm
2
/s

II. Relating φ to n and p, and visa versa 
To calculate φ knowing n or p it is better to say that kT/q 26 mV,≈ 

because then (kT/q)ln10 ≈ 60 mV: 28˚C/83˚F 

Example 1: n-type,  ND = Nd - Na = 1016 cm-3 

! 

"n =
kT

q
ln

10
16

10
10

=
kT

q
ln10

6 =
kT

q
ln10 # log10

6 $ 0.06 ln10
6 = 0.36 eV

Example 2: p-type,  NA = Na - Nd = 1017 cm-3 

! 

"p = #
kT

q
ln

10
17

10
10

= #
kT

q
ln10 $ log10

7 % #0.06 $ 7 = #0.42 eV

Example 3:  60 mV rule: 
For every order of magnitude the doping is above (below) ni, 

the potential increases (decreases) by 60 meV. 
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Non-uniform doping in thermal equilibrium,cont: 
We have reduced our problem to solving one equation for

one unknown, in this case φ(x): 

! 

d
2"(x)

dx
2

= #
q

$
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]

Once we find φ(x) we can find no and po from: 

! 

no(x) = nie
q" (x ) kT

and po(x) = nie
#q" (x ) kT

Solving Poisson’s equation for φ(x) is in general non-trivial,
and for precise answers a "Poisson Solver" program must
be employed. However, in two special cases we can find
very useful, insightful approximate analytical solutions: 

Case I: Abrupt changes from p- to n-type (i.e., junctions) 
also:	 surfaces (Si to air or other insulator) 

interfaces (Si to metal, Si to insulator, or Si to insulator to metal) 

Case II: Slowly varying doping profiles. 
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Non-uniform doping in thermal equilibrium,cont: 
Solving Poisson’s Equation in Two Special Cases: 

II. Slowly varying profiles 
If |Nd(x)-Na(x)| is slowly varying*, the quasineutrality holds, 

and the majority carrier concentration closely tracks the
net doping profile. 

In n-type samples: 

! 

no(x) " Nd (x) # Na (x)  and  po(x) = ni

2
no(x)

In p-type samples: 

! 

po(x) " Na (x) # Nd (x)  and  no(x) = ni

2
po(x)

I. Abrupt p-n junctions 
Near the junction there are very large net charge densities, 

and a dramatic reduction in the mobile carrier density. 
The model we employ with p-n junctions (and MOS 
capacitors) is called the “Depletion Approximation” 

* Note: What is meant by “slowly” can be quantified Clif Fonstad, 9/22/09 Lecture 4  - Slide 6using the extrinsic Debye length - see the text. 



 

     
         

 
NDn 

 - NAp 

Non-uniform doping in thermal equilibrium, cont.:
 
Case II: Abrupt p-n junctions 

Consider the profile below: 
Nd-Na 

x 

p-type n-type 

! 

no = NDn, po = ni

2
NDn

" =
kT

q
ln NDn /ni( ) # "n

! 

po = NAp, no = ni

2
NAp

" = #
kT

q
ln NAp /ni( ) $ "p

! 

?

Clif Fonstad, 9/22/09 
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no(x) = ?

po(x) = ?
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  Hole drift   Electron drift 

qNDn 

-qNAp 

0 0 +Q 

-Q 

Abrupt p-n junctions, cont: 
First look why there is a dipole layer in the vicinity of the 

junction, and a "built-in" electric field. 
no, po 

NDn po = NAp 
NAp 

no = NDn 

no = ni 
2/NAp 

po = ni 
2/NDn 

x 
Hole diffusion Electron diffusion
 

ρ(x) Drift balances 
diffusion in the 
steady state. 

x 
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Abrupt p-n junctions, cont: 
If the charge density is no longer zero there must be an 

electric field: εEx(x) = ∫ρ(x)dx 
Ex0 

Epk 

0 
x 

and an electrostatic potential step: φ(x) = -∫Ex(x)dx 
φ(x) 

φn 

φp 

x 

Ok, but how do we find φ(x)? Clif Fonstad, 9/22/09 Lecture 4  - Slide 9 



 

         

1019 − 101 − 0.54 − 

1018 − 102 − 0.48 − 

1017 − 103  − 0.42 − 

1016 − 104 −  0.36 − 

1015 − 105 − 0.30 − 

1014 − 106 − 0.24 − 

1013 − 107 − 0.18 − 

1012 − 108 − 0.12 − 

1011 − 109 − 0.06 − 

1010 − 1010 − 0.00 − 

109 − 1011 − -0.06 − 

108 − 1012 − -0.12 − 

107 − 1013 − -0.18 − 

106 − 1014 − -0.24 − 

105 − 1015 − -0.30 − 

104 − 1016 − -0.36 − 

103 − 1017 − -0.42 − 

102 − 1018 − -0.48 − 

101 − 1019 − -0.54 − 

 

 

 

 

 

More numbers no[cm-3] po[cm-3] φ [V] 

Typical range 
n-type 

Intrinsic 

p-type 
Typical range 
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Abrupt p-n Junctions, cont.: the general strategy
 

We have to solve a non-linear, 2nd. order DiffyQ for φ: 

! 

d
2"(x)

dx
2

= #
$(x)

%
= #

q

%
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]

To see how to proceed write this relationship as an integral:
 

! 

 "(x) = #
$(x)

%
&& dx + Ax

2 + Bx

After integrating ρ(x) twice many of details of its shape will be
lost, so if we have a good general idea of what ρ(x) looks 
like, we might be able to make an iteration strategy work: 

Guess a starting ρ(x). 
Integrated once to get E(x), and again to get φ(x). 
Use φ(x) to find po(x), no(x), and, ultimately, a new ρ(x). 
Compare the new ρ(x) to the starting ρ(x). 
- If it is not close enough, use the new ρ(x) to iterate again. 
- If it is close enough, quit. 

Clif Fonstad, 9/22/09 Lecture 4  - Slide 11 



 

             
           

The change in ρ  must 
be much more abrupt! 

A 60 mV change in  φ 
decreases no  and po 
10x and ρ  increases to 
90% of its final value. 

         
        

  

To figure out a good first guess for ρ(x), look at how quickly 
no and po must change by looking first at how φ changes: 

φ(x) 60 mV 

x 

φn 

φp 

φp 

φn 

700 to 900 mV 

ρ(x) 

60 mV 

The observation that ρ changes a lot, when φ changes
a little, is the key to the depletion approximation. 

qNDn 

0 0+Q 

-Q 
-qNAp 

…and what it 
means for ρ(x): 

90% 

90% x 

Clif Fonstad, 9/22/09 Lecture 4  - Slide 12 
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Abrupt p-n Junctions, cont.: The Depletion Approximation - an 
informed first estimate of ρ(x) 

Assume full depletion for -xp < x < xn, where xp and xn are 
two unknowns yet to be determined. This leads to: 

! 

"(x) =

0

#qNAp

qNDn

0

    for

    for

    for

    for

x < #xp

#xp < x < 0

0 < x < xn

xn < x

$ 

% 

& 
& 

' 

& 
& 

ρ(x)

Integrating the charge once gives the electric field
 

! 

E(x) =

0                   for            x < "xp

"
qNAp

#Si

x + xp( )         for       " xp < x < 0

qNDn

#Si

x " xn( )          for          0 < x < xn

0                 for             xn < x

$ 

% 

& 
& 
& 

' 

& 
& 
& 

Ε(x)

n 

E(0) = -qNApxp/εSi 
= -qNDnxn/εSi 

Clif Fonstad, 9/22/09 Lecture 4  - Slide 13 
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The Depletion Approximation, cont.:
 

Insisting E(x) is continuous at x = 0 yields our first

equation relating our unknowns, xn and xp: Ε(x)


-x


! 

NAp xp = NDn xn

p 
x1 xn 

E(0) = -qNApxp/εSiIntegrating again gives the electrostatic potential: 
= -qNDnxn/εSi 

φ(x)

φn 

-xp 
x 

! 

"(x) =

"p                             for       x < #xp

"p +
qNAp

2$Si

x + xp( )
2

          for     - xp < x < 0

"n #
qNDn

2$Si

x # xn( )
2
          for      0 < x < xn

"n                            for        xn < x

% 

& 

' 
' 
' 

( 

' 
' 
' 

Requiring that the potential be continuous at x = 0 gives
us our second relationship between xn and xp: 

xn 

φp 

φ(0) = φp + qNApxp
2/2εSi 

= φn − qNDnxn
2/2εSi 

! 

"p +
qNAp

2#Si

x p

2 = "n $
qNDn

2#Si

xn

2 2 

Clif Fonstad, 9/22/09 Lecture 4  - Slide 14 



 

   

           

       

           

           

The Depletion Approximation, cont.: 

Combining our two equations and solving for xp and xn gives: 

! 

xp =
2"Si #b

q

NDn

NAp NAp + NDn( )
, xn =

2"Si #b

q

NAp

NDn NAp + NDn( )

where we have introduced the built-in potential, φb: 

! 

"b # "n $"p =
kT

q
ln

NDn

ni

$ $
kT

q
ln

NAp

ni

% 

& 
' 

( 

) 
* =

kT

q
ln

NDnNAp

ni

2

We also care about the total width of the depletion region, w:
 

! 

w = xp + xn =
2"Si #b

q

NAp + NDn( )
NApNDn

And we want to know the peak electric field, | Epk |: 

! 

E pk = E(0) =
qNAp xp

"Si

=
qNDn xn

"Si

=
2q #b

"Si

NApNDn

NAp + NDn( )
Clif Fonstad, 9/22/09 Lecture 4  - Slide 15 



 

   
       

 

 
        

 

 

   
            

The Depletion Approximation, cont.: 
Beating on these results a bit more: 

! 

w =
2"Si #b

q

NAp + NDn( )
NApNDn

! 

E pk =
2q "b

#Si

NApNDn

NAp + NDn( )! 

xp =
NDnw

NAp + NDn( )
, xn =

NApw

NAp + NDn( )

x 

ρ(x)

 xn 

-xp 

-qNAp 

qNDn 

x 

Ε(x)

 xn 

-xp 

E(0) = -qNApxp/εSi 
= -qNDnxn/εSi 

|Epk| 

φ(x)

w 
xp xn 

xn 

-xp 

φp 

φn 

φ(0) = φp + qNApxp 
2/2εSi 

= φn − qNDnxn 
2/2εSi 

φb 
x
 

! 

"b # "n $"p =
kT

q
ln

NDnNAp

ni

2
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Abrupt p-n junctions, cont: Applying bias a p-n diode
 

Next the question is, "What happens to our ρ(x), E(x), and φ(x)
pictures when a voltage is applied at the device terminals?" 

First look at φ from contact to contact with zero bias, vAB = 0:
 

p nA B 
iD 

+ -
vAB 

-wp 

x 
wn-xp 0 xn 

φ 

With good contacts and low resistance wires and
semiconductor bulk, the only impediment to current flow is
the junction, and all of any applied voltage "falls" there.* 

* Note: This is not automatic. It requires that the
diode be well designed and fabricated carefully. Clif Fonstad, 9/22/09 Lecture 4  - Slide 17 



 

  
         

    
  

   

       

         

  

Abrupt p-n junctions, cont:
 
Bias applied, cont.:
 
All of the applied voltage "appears" across the junction, and


no other voltage drops occur.* 
Forward bias, vAB > 0: 

-wp 

wn-xp 0 xn 

vAB 

φ 

(φb -vAB) x
 

Lecture 4  - Slide 18 Clif Fonstad, 9/22/09 

No drop
in wire 

No drop
at contact No drop

in QNR 

No drop
in QNR 

No drop
at contact 

No drop
in wire 

Only the voltage
step across the
SCL changes 

* Note: This is not automatic. It requires that the
diode be well designed and fabricated carefully. 

-wp x 
wn-xp 0 xn 

vAB 

φ 

(φb -vAB) 

Reverse bias, vAB < 0: 



 

    
            

           
          

            
        

      

   Abrupt p-n junctions, cont:
 

Reverse bias applied: no current flows, but the potential step changes 
Assume the applied bias, vAB, is negative. This means that the 

potential on the p-side is reduced relative to that on the n-
side, and thus that the change in potential going across the
junction is increased from φn - φp = φb, to (φb - vAB). 

We use the Depletion Approximation model as before, now
with the new potential step height, obtaining: 

! 

xp =
2"Si #b $ vAB( )NDn

qNAp NAp + NDn( )
, xn =

2"Si #b $ vAB( )NAp

qNDn NAp + NDn( )

! 

w =
2"Si #b $ vAB( ) NAp + NDn( )

qNApNDn

! 

E pk =
2q "b # vAB( )NApNDn

$Si NAp + NDn( )
Clif Fonstad, 9/22/09 Lecture 4  - Slide 19 



 

   

             

 

The Depletion Approximation, cont.: 

Adding vAB to our earlier sketches: assume reverse bias, vAB < 0 

ρ(x)

 xn 

-xp 

-qNAp 

qNDn 

w 
xnxp 

Ε(x)

x 

x 
! 

w =
2"Si #b $ vAB( )

q

NAp + NDn( )
NApNDn

! 

xp =
NDnw

NAp + NDn( )
, xn =

NApw

NAp + NDn( )

xn 

-xp 

|Epk| 

! 

"# = #b $ vAB

  and     #b =
kT

q
ln

NDnNAp

ni

2

! 

E pk =
2q "b # vAB( )

$Si

NApNDn

NAp + NDn( )
φ(x)

 xn 

-xp 

(φb -vAB) 

x 
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Reverse bias, cont: Is it really that easy? Reverse bias FAQs: 

1. How come we can still use the Depletion Approximation? 
No current  →  no mobile charge →  electrostatics unchanged 

2.  What happens in forward bias? 
This same modeling applies, until the current turns on at vAB ≈ 0.5 V. 
By the time vAB approaches φb, the model no longer holds; the current 
is too large. 

3.  What happens at very large reverse bias? 
When Epk gets too big, the junction "breaks down" and large reverse 
current flows. 

4.  Is there anything interesting we haven't talked about? 
Yes, the charge stored in the depletion regions.  It is very interesting 
and important. For starters, the net charge stores on the positive 
side of the junction is negative: 

! 

Qp = "qANAp xp = " 2q#Si $b " vAB( )NAp NDn NAp + NDn( )

Clif Fonstad, 9/22/09 Hear all about it in recitation tomorrow. Lecture 4  - Slide 21 



 

      
       

         
      

       
         

           
        

  

  

Non-uniform doping in thermal equilibrium, cont.: 
Case II: Slowly varying doping profiles 
Detailed solutions of Poisson's equation in semiconductors 

teach us that if the doping variation, |Nd(x)-Na(x)| is slow 
enough*, then quasineutrality holds, and the majority 
carrier concentration closely tracks the net doping profile. 

The net charge densities and electric field are all negligible. 

x 

Nd-Na no(x) 
ρ(x) > 0 

ρ(x) < 0 

E(x) 
Negligibly 

small 

! 

no(x) " ND (x)

Can still say: 

* Note: What is meant by “slowly” can be quantified using 
the extrinsic Debye length - see the course text. Clif Fonstad, 9/22/09 Lecture 4  - Slide 22 



 

       
       

      
    

   

   

           
        

Non-uniform doping in thermal equilibrium, cont.:
 
Case II: Slowly varying doping profiles, cont. 
If |Nd(x)-Na(x)| is slowly varying*, then quasineutrality

holds, and the majority carrier concentration closely
tracks the net doping profile. 

- In n-type samples: 

! 

no(x) " Nd (x) # Na (x)  and  po(x) = ni

2
no(x)

 Also,   $n (x) =
kT

q
ln

Nd (x) # Na (x)

ni

% 

& 
' 

( 

) 
* 

- In p-type samples:
 

! 

po(x) " Na (x) # Nd (x)  and  no(x) = ni

2
po(x)

 Also,   $p (x) = #
kT

q
ln

Na (x) # Nd (x)

ni

% 

& 
' 

( 

) 
* 

* Note: What is meant by “slowly” can be quantified using 
the extrinsic Debye length - see the course text. Clif Fonstad, 9/22/09 Lecture 4  - Slide 23 



 

     
 

         
  

      
   

  

 
      

 
         

 
 
   
     

           

6.012 - Microelectronic Devices and Circuits
 

Lecture 4 - p-n Junctions:  Electrostatics - Summary
 

• Abrupt p-n junction (electrostatics)
Depletion region forms for –xp < x < xn : 

xp/xn = NDn/NAp 
w = xp + xn = [(2ε/q) φb {(NAp + NDn)/NApNDn}]1/2 

|Epk| = |E(0)| = [(2q/ε) φb {NApNDn/(NAp + NDn)}]1/2 

φβ ≡(kT/q) ln (NApNDn/ni
2 ) 

Observations: 
1.  Greatest depletion is into most lightly doped side 
2.  Depletion width, w, goes down as doping is increased
3.  Peak electric field, |Epk|, goes up as doping is increased 
4.  	Asymmetric junction: assume NAp >> NDn, then 

xn >> xp, w ≈ xn ≈ [(2ε/q)φbNDn]1/2, |Epk| ≈  [(2q/ε)φbNDn]1/2 

• Applying bias to a p-n junction (what happens?) 
Want all applied bias, vAB, to fall across depletion region 
Two changes:

1.  ∆φ	 crossing junction changes, and thus so do w, and Epk: 
(φb – vAB) replaces φb, so that both w and Epk 

increase with increasing reverse bias 
2.  Currents flow	 (The topic of Lectures 5 and 6) 

Clif Fonstad, 9/22/09	 Lecture 4  - Slide 24 
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