MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:

Markus Zahn, Erich Ippen, and David Staelin, *6.013/ESD.013J Electromagnetics and Applications, Fall 2005.* (Massachusetts Institute of Technology: MIT OpenCourseWare). <u>http://ocw.mit.edu</u> (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.013 Electromagnetics and Applications

Problem Set #10	Issued: 11/22/05
Fall Term 2005	Due: 11/30/05
Suggested Reading Assignment: Lecture Notes 18	

Problem 10.1

A magnetohydrodynamic (MHD) machine of height *s* and width *a* is placed within a magnetic circuit. The fluid moving at velocity *V* out of the paper obeys Ohm's law $\overline{I}_{v} = \sigma(\overline{E} + \overline{V}_{v} + \overline{R})$

$$J = \sigma(E + V \times B)$$

and has magnetic permeability μ_o .

- (a) A constant dc current $i_f = I_0$ is applied to the *N* turn coil. What is the magnetic field \overline{B} in the MHD machine?
- (b) What is the voltage v across the load resistor R_L ?

- (c) The MHD machine and load resistor R_L are now connected in series with the Nturn coil that has a resistance R_f as shown in the figure to the left. No current is applied but at t = 0 noise causes a small current so that $i_f (t=0) = i(t=0) = I_0$. Neglecting magnetic saturation of the iron core of the magnetic current, what is $i_f (t)$ for $t \ge 0$?
- (d) Under what conditions is i_f(t) unbounded as t→∞? Such a system is called DC self-excited.

Adapted from Problem 6.20 in Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

Problem 10.2

The field winding of a homopolar generator is connected in series with the rotor terminals through a capacitor *C* as shown in the equivalent circuit below. The rotor is turned at constant speed ω .

- (a) For what minimum value of rotor speed is the system self-excited?
- (b) For the self-excited condition of (a) what range of values of *C* will result in dc self-excitation or in ac self- excitation?
- (c) What is the frequency for ac self-excitation?

Problem 6.21 in Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

Problem 10.3

Figure 6.4.5 in *Electromechanical Dynamics*, by Herbert H. Woodson and James R. Melcher, 1968.

The electromechanical equivalent circuit of a commutator machine is shown above. The field and armature windings can be connected in parallel (shunt excitation) or in series (series excitation) as shown below:

Figure 6.4.9 in *Electromechanical Dynamics*, by Herbert H. Woodson and James R. Melcher, 1968.

The electromagnetic torque on the armature (rotor) with moment of inertia J_r is $T^e = Gi_f i_a$.

- a) A DC voltage source V_0 is connected across the v_t terminals for shunt and series excitations. In the DC steady state, find the terminal current i_t and torque $T^e = Gi_f i_a$ as a function of armature angular speed $\omega = \dot{\theta}$ for shunt and series excitations.
- b) The voltage source of part (a) that was connected across the v_t terminals is now removed and is replaced by a load resistor R_L for shunt and series configurations. Assume that all circuit variables vary as e^{st} and find natural frequency *s* for each configuration. For what rotor speed $(\omega = \dot{\theta})$, direction and magnitude, will the generator be self-excited for each configuration?

Hint: The shunt excitation algebra can be involved without some forethought. To simplify the math manipulations for this linear model it is convenient to immediately write the currents i_f and i_a as

$$i_f = I_f e^{\mathrm{st}}$$

 $i_a = I_a e^{\mathrm{st}}$

Solve for solutions for s and find unstable roots.