
Problem Wk.4.3.3: State Machine Composition

Use sm.R, sm.Gain, sm.Cascade, sm.FeedbackAdd and sm.FeedbackSubtract to construct the

following state machines. These are the same systems that appeared in Wk.4.2.1.

Define a Python procedure called accumulator that takes one argument:

the output before the first input, init.

and which returns a state machine whose output at time n is the sum of its inputs up to
and including time n. So the output at time 0 is the sum of init and the input at time 0.

Define a Python procedure called accumulatorDelay that takes one argument:

the output at time 0, init.

and which returns a state machine whose output at time n is the sum of its inputs up to

and including time n-1.

Define a Python procedure called accumulatorDelayScaled that takes two arguments:

the scale factor s.
the output at time 0, init.

and which returns a state machine whose output at time n is the sum of the scaled

inputs (each scaled by s) up to and including time n-1.

You can debug these in Idle. In the design lab folder create a file with

import lib601.sm as sm

at the top. You can then place your definitions and test cases in the file. Evaluate them
with Run Module. You can use transduce to test your machines.

Use sm.R, sm.Gain, sm.Cascade, sm.FeedbackAdd and sm.FeedbackSubtract

to construct the state machines

def accumulator(init):

pass

def accumulatorDelay(init):

pass

def accumulatorDelayScaled(s, init):

pass

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

