
Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 117

Chapter 4
State Machines

State machines are a method of modeling systems whose output depends on the entire history
of their inputs, and not just on the most recent input. Compared to purely functional systems,
in which the output is purely determined by the input, state machines have a performance that
is determined by its history. State machines can be used to model a wide variety of systems,
including:

•	 user interfaces, with typed input, mouse clicks, etc.;

•	 conversations, in which, for example, the meaning of a word “it” depends on the history of
things that have been said;

•	 the state of a spacecraft, including which valves are open and closed, the levels of fuel and
oxygen, etc.; and

•	 the sequential patterns in DNA and what they mean.

State machine models can either be continuous time or discrete time. In continuous time models,
we typically assume continuous spaces for the range of values of inputs and outputs, and use
differential equations to describe the system’s dynamics. This is an interesting and important ap­
proach, but it is hard to use it to describe the desired behavior of our robots, for example. The
loop of reading sensors, computing, and generating an output is inherently discrete and too slow
to be well-modeled as a continuous-time process. Also, our control policies are often highly non­
linear and discontinuous. So, in this class, we will concentrate on discrete-time models, meaning
models whose inputs and outputs are determined at specific increments of time, and which are
synchronized to those specific time samples. Furthermore, in this chapter, we will make no as­
sumptions about the form of the dependence of the output on the time-history of inputs; it can be
an arbitrary function.

Generally speaking, we can think of the job of an embedded system as performing a transduction
from a stream (infinite sequence) of input values to a stream of output values. In order to specify
the behavior of a system whose output depends on the history of its inputs mathematically, you
could think of trying to specify a mapping from i1, . . . , it (sequences of previous inputs) to ot

(current output), but that could become very complicated to specify or execute as the history gets
longer. In the state-machine approach, we try to find some set of states of the system, which
capture the essential properties of the history of the inputs and are used to determine the current
output of the system as well as its next state. It is an interesting and sometimes difficult modeling
problem to find a good state-machine model with the right set of states; in this chapter we will
explore how the ideas of PCAP can aid us in designing useful models.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 118

One thing that is particularly interesting and important about state machine models is how many
ways we can use them. In this class, we will use them in three fairly different ways:
1.	 Synthetically: State machines can specify a “program” for a robot or other system embedded

in the world, with inputs being sensor readings and outputs being control commands.
2.	 Analytically: State machines can describe the behavior of the combination of a control system

and the environment it is controlling; the input is generally a simple command to the entire
system, and the output is some simple measure of the state of the system. The goal here is
to analyze global properties of the coupled system, like whether it will converge to a steady
state, or will oscillate, or will diverge.

3.	 Predictively: State machines can describe the way the environment works, for example, where
I will end up if I drive down some road from some intersection. In this case, the inputs are
control commands and the outputs are states of the external world. Such a model can be
used to plan trajectories through the space of the external world to reach desirable states, by
considering different courses of action and using the model to predict their results.

We will develop a single formalism, and an encoding of that formalism in Python classes, that
will serve all three of these purposes.

Our strategy for building very complex state machines will be, abstractly, the same strategy we
use to build any kind of complex machine. We will define a set of primitive machines (in this
case, an infinite class of primitive machines) and then a collection of combinators that allow us
to put primitive machines together to make more complex machines, which can themselves be
abstracted and combined to make more complex machines.

4.1 Primitive state machines
We can specify a transducer (a process that takes as input a sequence of values which serve as
inputs to the state machine, and returns as ouput the set of outputs of the machine for each input)
as a state machine (SM) by specifying:
•	 a set of states, S,
•	 a set of inputs, I, also called the input vocabulary,
•	 a set of outputs, O, also called the output vocabulary,
•	 a next-state function, n(it, st) 7→ st+1, that maps the input at time t and the state at time t to

the state at time t + 1,
•	 an output function, o(it, st) 7→ ot, that maps the input at time t and the state at time t to the

output at time t; and
• an initial state, s0, which is the state at time 0.

Here are a few state machines, to give you an idea of the kind of systems we are considering.

•	 A tick-tock machine that generates the sequence 1, 0, 1, 0, . . . is a finite-state machine that ig­

nores its input.
•	 The controller for a digital watch is a more complicated finite-state machine: it transduces a

sequence of inputs (combination of button presses) into a sequence of outputs (combinations
of segments illuminated in the display).

•	 The controller for a bank of elevators in a large office building: it transduces the current set
of buttons being pressed and sensors in the elevators (for position, open doors, etc.) into
commands to the elevators to move up or down, and open or close their doors.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 119

The very simplest kind of state machine is a pure function: if the machine has no state, and the
output function is purely a function of the input, for example, ot = it + 1, then we have an
immediate functional relationship between inputs and outputs on the same time step. Another
simple class of SMs are finite-state machines, for which the set of possible states is finite. The
elevator controller can be thought of as a finite-state machine, if elevators are modeled as being
only at one floor or another (or possibly between floors); but if the controller models the exact
position of the elevator (for the purpose of stopping smoothly at each floor, for example), then it
will be most easily expressed using real numbers for the state (though any real instantiation of it
can ultimately only have finite precision). A different, large class of SMs are describable as linear,
time-invariant (LTI) systems. We will discuss these in detail chapter ??.

4.1.1 Examples
Let’s look at several examples of state machines, with complete formal definitions.

4.1.1.1 Language acceptor
Here is a finite-state machine whose output is true if the input string adheres to a simple pattern,
and false otherwise. In this case, the pattern has to be a, b, c, a, b, c, a, b, c,

It uses the states 0, 1, and 2 to stand for the situations in which it is expecting an a, b, and c,
respectively; and it uses state 3 for the situation in which it has seen an input that was not the one
that was expected. Once the machine goes to state 3 (sometimes called a rejecting state), it never
exits that state.

S = {0, 1, 2, 3}

I = {a, b, c}

O = {true, false}

1 if s = 0, i = a

2 if s = 1, i = b

n(s, i) =

 

0 if s = 2, i = c

3 otherwise

false if n(s, i) = 3

o(s, i) =

{
true otherwise

s0 = 0

Figure 4.1 shows a state transition diagram for this state machine. Each circle represents a state.
The arcs connecting the circles represent possible transitions the machine can make; the arcs are
labeled with a pair i, o, which means that if the machine is in the state denoted by a circle with
label s, and gets an input i, then the arc points to the next state, n(s, i) and the output generated
o(s, i) = o. Some arcs have several labels, indicating that there are many different inputs that will
cause the same transition. Arcs can only be traversed in the direction of the arrow.

For a state transition diagram to be complete, there must be an arrow emerging from each state
for each possible input i (if the next state is the same for some inputs, then we draw the graph
more compactly by using a single arrow with multiple labels, as you will see below).

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 120

0

3

21

c / True

a / False
b / False

b / False
c / False

a / True b / True

a / False
c / False

a / False
b / False
c / False

Figure 4.1 State transition diagram for language acceptor.

We will use tables like the following one to examine the evolution of a state machine:

time 0 1 2 ...

input i0 i1 i2 ...
state s0 s1 s2 ...

output o1 o2 o3 ...

For each column in the table, given the current input value and state we can use the output
function o to determine the output in that column; and we use the n function applied to that
input and state value to determine the state in the next column. Thus, just knowing the input
sequence and s0, and the next-state and output functions of the machine will allow you to fill in
the rest of the table.

For example, here is the state of the machine at the initial time point:

time 0 1 2 ...

input
state

output

i0

s0

...

...

...

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 121

Using our knowledge of the next state function n, we have:

time 0 1 2 ...

input i0 ...
state s0 s1 ...

output ...

and using our knowledge of the output function o, we have at the next input value

time 0 1 2 ...

input i0 i1 ...
state s0 s1 ...

output o1 ...

This completes one cycle of the statement machine, and we can now repeat the process.

Here is a table showing what the language acceptor machine does with input sequence (’a’, ’b’,
’c’, ’a’, ’c’, ’a’, ’b’):

time 0 1 2 3 4 5 6 7

input
state

output

’a’
0

True

’b’
1

True

’c’
2

True

’a’
0

True

’c’
1

False

’a’
3

False

’b’
3

False
3

The output sequence is (True, True, True, True, False, False, False).

Clearly we don’t want to analyze a system by considering all input sequences, but this table helps
us understand the state transitions of the system model.

To learn more: Finite-state machine language acceptors can be built for a class of patterns
called regular languages. There are many more complex patterns (such as
the set of strings with equal numbers of 1’s and 0’s) that cannot be rec­
ognized by finite-state machines, but can be recognized by a specialized
kind of infinite-state machine called a stack machine. To learn more about
these fundamental ideas in computability theory, start with the Wikipedia
article on Computability_theory_(computer_science)

4.1.1.2 Up and down counter
This machine can count up and down; its state space is the countably infinite set of integers. It
starts in state 0. Now, if it gets input u, it goes to state 1; if it gets u again, it goes to state 2. If it
gets d, it goes back down to 1, and so on. For this machine, the output is always the same as the
next state.

{

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 122

S = integers

I = {u, d}

O = integers

s + 1 if i = u
n(s, i) =

s − 1 if i = d

o(s, i) = n(s, i)

s0 = 0

Here is a table showing what the up and down counter does with input sequence u, u, u, d, d, u:

time 0 1 2 3 4 5 6

input
state

output

u
0
1

u
1
2

u
2
3

d
3
2

d
2
1

u
1
2

2

The output sequence is 1, 2, 3, 2, 1, 2.

4.1.1.3 Delay
An even simpler machine just takes the input and passes it through to the output, but with one
step of delay, so the kth element of the input sequence will be the k + 1st element of the output
sequence. Here is the formal machine definition:

S = anything

I = anything

O = anything

n(s, i) = i

o(s, i) = s

s0 = 0

Given an input sequence i0, i1, i2, . . ., this machine will produce an output sequence
0, i0, i1, i2, The initial 0 comes because it has to be able to produce an output before it
has even seen an input, and that output is produced based on the initial state, which is 0. This
very simple building block will come in handy for us later on.

Here is a table showing what the delay machine does with input sequence 3, 1, 2, 5, 9:

time 0 1 2 3 4 5

input
state

output

3
0
0

1
3
3

2
1
1

5
2
2

9
5
5

9

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 123

The output sequence is 0, 3, 1, 2, 5.

4.1.1.4 Accumulator
Here is a machine whose output is the sum of all the inputs it has ever seen.

S = numbers

I = numbers

O = numbers

n(s, i) = s + i

o(s, i) = n(s, i)

s0 = 0

Here is a table showing what the accumulator does with input sequence 100, −3, 4, −123, 10:

time 0 1 2 3 4 5

input
state

output

100
0

100

-3
100
97

4
97

101

-123
101
-22

10
-22
-12

-12

4.1.1.5 Average2
Here is a machine whose output is the average of the current input and the previous input. It
stores its previous input as its state.

S = numbers

I = numbers

O = numbers

n(s, i) = i

o(s, i) = (s + i)/2

s0 = 0

Here is a table showing what the average2 machine does with input sequence 100, −3, 4, −123, 10:

time 0 1 2 3 4 5

input
state

output

100
0

50

-3
100
48.5

4
-3
0.5

-123
4

-59.5

10
-123
-56.5

10

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 124

4.1.2 State machines in Python
Now, it is time to make computational implementations of state machine models. In this section
we will build up some basic Python infrastructure to make it straightforward to define primitive
machines; in later sections we will see how to combine primitive machines into more complex
structures.

We will use Python’s object-oriented facilities to make this convenient. We have an abstract class,
SM, which will be the superclass for all of the particular state machine classes we define. It does
not make sense to make an instance of SM, because it does not actually specify the behavior of
the machine; it just provides some utility methods. To specify a new type of state machine, you
define a new class that has SM as a superclass.

In any subclass of SM, it is crucial to define an attribute startState, which specifies the initial
state of the machine, and a method getNextValues which takes the state at time t and the input
at time t as input, and returns the state at time t + 1 and the output at time t. This is a choice
that we have made as designers of our state machine model; we will rely on these two pieces of
information in our underlying infrastructure for simulating state machines, as we will see shortly.

Here, for example, is the Python code for an accumulator state machine, which implements the
definition given in section 4.1.1.4. 29

class Accumulator(SM):

startState = 0

def getNextValues(self, state, inp):

return (state + inp, state + inp)

It is important to note that getNextValues does not change the state of the machine, in other
words, it does not mutate a state variable. Its job is to be a pure function: to answer the question
of what the next state and output would be if the current state were state and the current input
were inp. We will use the getNextValues methods of state machines later in the class to make
plans by considering alternative courses of action, so they must not have any side effects. As we
noted, this is our choice as designers of the state machine infrastructure We could have chosen to
implement things differently, however this choice will prove to be very useful. Thus, in all our
state machines, the function getNextValues will capture the transition from input and state to
output and state, without mutating any stored state values.

To run a state machine, we make an instance of the appropriate state-machine class, call its start
method (a built in method we will see shortly) to set the state to the starting state, and then ask
it to take steps; each step consists of generating an output value (which is printed) and updating
the state to the next state, based on the input. The abstract superclass SM defines the start and
step methods. These methods are in charge of actually initializing and then changing the state
of the machine as it is being executed. They do this by calling the getNextValues method for
the class to which this instance belongs. The start method takes no arguments (but, even so, we
have to put parentheses after it, indicating that we want to call the method, not to do something

29	 Throughout this code, we use inp, instead of input, which would be clearer. The reason is that the name input is
used by Python as a function. Although it is legal to re-use it as the name of an argument to a procedure, doing so is a
source of bugs that are hard to find (if, for instance, you misspell the name input in the argument list, your references
to input later in the procedure will be legal, but will return the built-in function.)

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 125

with the method itself); the step method takes one argument, which is the input to the machine
on the next step. So, here is a run of the accumulator, in which we feed it inputs 3, 4, and -2:

>>> a = Accumulator()

>>> a.start()

>>> a.step(3)

3

>>> a.step(4)

7

>>> a.step(-2)

5

The class SM specifies how state machines work in general; the class Accumulator specifies how
accumulator machines work in general; and the instance a is a particular machine with a particu­
lar current state. We can make another instance of accumulator:

>>> b = Accumulator()
>>> b.start()
>>> b.step(10)
10
>>> b.state
10
>>> a.state
5

Now, we have two accumulators, a, and b, which remember, individually, in what states they
exist. Figure 4.2 shows the class and instance structures that will be in place after creating these
two accumulators.

b
a

Accumulator
SM

global run

step
start

transduce

getNextValues

startState 0

5state10state

Figure 4.2 Classes and instances for an Accumulator SM. All of the dots represent procedure
objects.

4.1.2.1	 Defining a type of SM
Let’s go back to the definition of the Accumulator class, and study it piece by piece.

First, we define the class and say that it is a subclass of SM:

class Accumulator(SM):

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 126

Next, we define an attribute of the class, startState, which is the starting state of the machine.
In this case, our accumulator starts up with the value 0.

startState = 0

Note that startState is required by the underlying SM class, so we must either define it in our
subclass definition or use a default value from the SM superclass.

The next method defines both the next-state function and the output function, by taking the cur­
rent state and input as arguments and returning a tuple containing both the next state and the
output.

For our accumulator, the next state is just the sum of the previous state and the input; and the
output is the same thing:

def getNextValues(self, state, inp):

return (state + inp, state + inp)

It is crucial that getNextValues be a pure function; that is, that it not change the state of the
object (by assigning to any attributes of self). It must simply compute the necessary values and
return them. We do not promise anything about how many times this method will be called and
in what circumstances.

Sometimes, it is convenient to arrange it so that the class really defines a range of machines with
slightly different behavior, which depends on some parameters that we set at the time we create
an instance. So, for example, if we wanted to specify the initial value for an accumulator at the
time the machine is created, we could add an __init__ method30 to our class, which takes an
initial value as a parameter and uses it to set an attribute called startState of the instance.31

class Accumulator(SM):

def __init__(self, initialValue):

self.startState = initialValue

def getNextValues(self, state, inp):

return state + inp, state + inp

Now we can make an accumulator and run it like this:

>>> c = Accumulator(100)

>>> c.start()

>>> c.step(20)

120

>>> c.step(2)

122

30	 Remember that the __init__ method is a special feature of the Python object-oriented system, which is called when­
ever an instance of the associated class is created.

31	 Note that in the original version of Accumulator, startState was an attribute of the class, since it was the same for
every instance of the class; now that we want it to be different for different instances, we need startState to be an
attribute of the instance rather than the class, which is why we assign it in the __init__ method, which modifies the
already-created instance.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 127

4.1.2.2 The SM Class
The SM class contains generally useful methods that apply to all state machines. A state machine
is an instance of any subclass of SM, that has defined the attribute startState and the method
getNextValues, as we did for the Accumulator class. Here we examine these methods in more
detail.

Running a machine
The first group of methods allows us to run a state machine. To run a machine is to provide it with
a sequence of inputs and then sequentially go forward, computing the next state and generating
the next output, as if we were filling in a state table.

To run a machine, we have to start by calling the start method. All it does is create an attribute
of the instance, called state, and assign to it the value of the startState attribute. It is crucial
that we have both of these attributes: if we were to just modify startState, then if we wanted
to run this machine again, we would have permanently forgotten what the starting state should
be. Note that state becomes a repository for the state of this instance; however we should not
mutate it directly. This variable becomes the internal representation of state for each instance of
this class.

class SM:

def start(self):

self.state = self.startState

Once it has started, we can ask it to take a step, using the step method, which, given an input,
computes the output and updates the internal state of the machine, and returns the output value.

def step(self, inp):

(s, o) = self.getNextValues(self.state, inp)

self.state = s

return o

To run a machine on a whole sequence of input values, we can use the transduce method, which
will return the sequence of output values that results from feeding the elements of the list inputs
into the machine in order.

def transduce(self, inputs):

self.start()

return [self.step(inp) for inp in inputs]

Here are the results of running transduce on our accumulator machine. We run it twice, first
with a simple call that does not generate any debugging information, and simply returns the
result. The second time, we ask it to be verbose, resulting in a print-out of what is happening on
the intermediate steps.32

32 In fact, the second machine trace, and all the others in this section were generated with a call like:

>>> a.transduce([100, -3, 4, -123, 10], verbose = True, compact = True)

See the Infrastructure Guide for details on different debugging options. To simplify the code examples we show in
these notes, we have omitted parts of the code that are responsible for debugging printouts.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 128

a = Accumulator()

>>> a.transduce([100, -3, 4, -123, 10])

[100, 97, 101, -22, -12]

>>> a.transduce([100, -3, 4, -123, 10], verbose = True)

Start state: 0

In: 100 Out: 100 Next State: 100

In: -3 Out: 97 Next State: 97

In: 4 Out: 101 Next State: 101

In: -123 Out: -22 Next State: -22

In: 10 Out: -12 Next State: -12

[100, 97, 101, -22, -12]

Some machines do not take any inputs; in that case, we can simply call the SM run method, which
is equivalent to doing transduce on an input sequence of [None, None, None, ...].

def run(self, n = 10):

return self.transduce([None]*n)

4.1.2.2.1 Default methods
This section is optional.

In order to make the specifications for the simplest machine types as short as possible, we have
also provided a set of default methods in the SM class. These default methods say that, unless they
are overridden in a subclass, as they were when we defined Accumulator, we will assume that a
machine starts in state None and that its output is the same as its next state.

startState = None
def getNextValues(self, state, inp):

nextState = self.getNextState(state, inp)

return (nextState, nextState)

Because these methods are provided in SM, we can define, for example, a state machine whose out­
put is always k times its input, with this simple class definition, which defines a getNextState
procedure that simply returns a value that is treated as both the next state and the output.

class Gain(SM):

def __init__(self, k):

self.k = k

def getNextState(self, state, inp):

return inp * self.k

We can use this class as follows:

>>> g = Gain(3)

>>> g.transduce([1.1, -2, 100, 5])

[3.3000000000000003, -6, 300, 15]

The parameter k is specified at the time the instance is created. Then, the output of the machine
is always just k times the input.

We can also use this strategy to write the Accumulator class even more succinctly:

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 129

class Accumulator(SM):

startState = 0

def getNextState(self, state, inp):

return state + inp

The output of the getNextState method will be treated both as the output and the next state of
the machine, because the inherited getNextValues function uses it to compute both values.

4.1.2.3 More examples
Here are Python versions of the rest of the machines we introduced in the first section.

Language acceptor
Here is a Python class for a machine that “accepts” the language that is any prefix of the infinite
sequence [’a’, ’b’, ’c’, ’a’, ’b’, ’c’,].

class ABC(SM):

startState = 0

def getNextValues(self, state, inp):

if state == 0 and inp == ’a’:

return (1, True)

elif state == 1 and inp == ’b’:

return (2, True)

elif state == 2 and inp == ’c’:

return (0, True)

else:

return (3, False)

It behaves as we would expect. As soon as it sees a character that deviates from the desired
sequence, the output is False, and it will remain False for ever after.

>>> abc = ABC()

>>> abc.transduce([’a’,’a’,’a’], verbose = True)

Start state: 0

In: a Out: True Next State: 1

In: a Out: False Next State: 3

In: a Out: False Next State: 3

[True, False, False]

>>> abc.transduce([’a’, ’b’, ’c’, ’a’, ’c’, ’a’, ’b’], verbose = True)

Start state: 0

In: a Out: True Next State: 1

In: b Out: True Next State: 2

In: c Out: True Next State: 0

In: a Out: True Next State: 1

In: c Out: False Next State: 3

In: a Out: False Next State: 3

In: b Out: False Next State: 3

[True, True, True, True, False, False, False]

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 130

Count up and down
This is a direct translation of the machine defined in section 4.1.1.2.

class UpDown(SM):
startState = 0
def getNextState(self, state, inp):

if inp == ’u’:

return state + 1

else:

return state - 1

We take advantage of the default getNextValues method to make the output the same as the
next state.

>>> ud = UpDown()
>>> ud.transduce([’u’,’u’,’u’,’d’,’d’,’u’], verbose = True)
Start state: 0
In: u Out: 1 Next State: 1
In: u Out: 2 Next State: 2
In: u Out: 3 Next State: 3
In: d Out: 2 Next State: 2
In: d Out: 1 Next State: 1
In: u Out: 2 Next State: 2
[1, 2, 3, 2, 1, 2]

Delay
In order to make a machine that delays its input stream by one time step, we have to specify what
the first output should be. We do this by passing the parameter, v0, into the __init__ method
of the Delay class. The state of a Delay machine is just the input from the previous step, and the
output is the state (which is, therefore, the input from the previous time step).

class Delay(SM):
def __init__(self, v0):

self.startState = v0
def getNextValues(self, state, inp):

return (inp, state)

>>> d = Delay(7)

>>> d.transduce([3, 1, 2, 5, 9], verbose = True)

Start state: 7

In: 3 Out: 7 Next State: 3

In: 1 Out: 3 Next State: 1

In: 2 Out: 1 Next State: 2

In: 5 Out: 2 Next State: 5

In: 9 Out: 5 Next State: 9

[7, 3, 1, 2, 5]

>>> d100 = Delay(100)

>>> d100.transduce([3, 1, 2, 5, 9], verbose = True)

Start state: 100

In: 3 Out: 100 Next State: 3

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 131

In: 1 Out: 3 Next State: 1
In: 2 Out: 1 Next State: 2
In: 5 Out: 2 Next State: 5
In: 9 Out: 5 Next State: 9
[100, 3, 1, 2, 5]

We will use this machine so frequently that we put its definition in the sm module (file), along
with the class.

R
We can use R as another name for the Delay class of state machines. It will be an important
primitive in a compositional system of linear time-invariant systems, which we explore in the
next chapter.

Average2
Here is a state machine whose output at time t is the average of the input values from times t − 1

and t.

class Average2(SM):
startState = 0
def getNextValues(self, state, inp):

return (inp, (inp + state) / 2.0)

It needs to remember the previous input, so the next state is equal to the input. The output is the
average of the current input and the state (because the state is the previous input).

>>> a2 = Average2()
>>> a2.transduce([10, 5, 2, 10], verbose = True, compact = True)
Start state: 0
In: 10 Out: 5.0 Next State: 10
In: 5 Out: 7.5 Next State: 5
In: 2 Out: 3.5 Next State: 2
In: 10 Out: 6.0 Next State: 10
[5.0, 7.5, 3.5, 6.0]

Sum of last three inputs
Here is an example of a state machine where the state is actually a list of values. Generally speak­
ing, the state can be anything (a dictionary, an array, a list); but it is important to be sure that
the getNextValues method does not make direct changes to components of the state, instead
returning a new copy of the state with appropriate changes. We may make several calls to the
getNextValues function on one step (or, later in our work, call the getNextValues function
with several different inputs to see what would happen under different choices); these function
calls are made to find out a value of the next state, but if they actually change the state, then the
same call with the same arguments may return a different value the next time.

This machine generates as output at time t the sum of it−2, it−1 and it; that is, of the last three
inputs. In order to do this, it has to remember the values of two previous inputs; so the state is
a pair of numbers. We have defined it so that the initial state is (0, 0). The getNextValues

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 132

method gets rid of the oldest value that it has been remembering, and remembers the current
input as part of the state; the output is the sum of the current input with the two old inputs that
are stored in the state. Note that the first line of the getNextValues procedure is a structured
assignment (see section 3.3).

class SumLast3 (SM):

startState = (0, 0)

def getNextValues(self, state, inp):

(previousPreviousInput, previousInput) = state

return ((previousInput, inp),

previousPreviousInput + previousInput + inp)

>>> sl3 = SumLast3()

>>> sl3.transduce([2, 1, 3, 4, 10, 1, 2, 1, 5], verbose = True)

Start state: (0, 0)

In: 2 Out: 2 Next State: (0, 2)

In: 1 Out: 3 Next State: (2, 1)

In: 3 Out: 6 Next State: (1, 3)

In: 4 Out: 8 Next State: (3, 4)

In: 10 Out: 17 Next State: (4, 10)

In: 1 Out: 15 Next State: (10, 1)

In: 2 Out: 13 Next State: (1, 2)

In: 1 Out: 4 Next State: (2, 1)

In: 5 Out: 8 Next State: (1, 5)

[2, 3, 6, 8, 17, 15, 13, 4, 8]

Selector
A simple functional machine that is very useful is the Select machine. You can make many
different versions of this, but the simplest one takes an input that is a stream of lists or tuples of
several values (or structures of values) and generates the stream made up only of the kth elements
of the input values. Which particular component this machine is going to select is determined by
the value k, which is passed in at the time the machine instance is initialized.

class Select (SM):

def __init__(self, k):

self.k = k

def getNextState(self, state, inp):

return inp[self.k]

4.1.3 Simple parking gate controller
As one more demonstration, here is a simple example of a finite-state controller for a gate leading
out of a parking lot.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 133

The gate has three sensors:
• gatePosition has one of three values ’top’, ’middle’, ’bottom’, signi­

fying the position of the arm of the parking gate.

• carAtGate is True if a car is waiting to come through the gate and False

otherwise.

• carJustExited is True if a car has just passed through the gate; it is true

for only one step before resetting to False.

Pause to try 4.1. How many possible inputs are there?

A: 12.

The gate has three possible outputs (think of them as controls to the motor for the gate arm):

’raise’, ’lower’, and ’nop’. (Nop means “no operation.”)

Roughly, here is what the gate needs to do:

•	 If a car wants to come through, the gate needs to raise the arm until it is at the top position.
•	 Once the gate is at the top position, it has to stay there until the car has driven through the

gate.
•	 After the car has driven through the gate needs to lower the arm until it reaches the bottom

position.

So, we have designed a simple finite-state controller with a state transition diagram as shown
in figure 4.3. The machine has four possible states: ’waiting’ (for a car to arrive at the gate),
’raising’ (the arm), ’raised’ (the arm is at the top position and we’re waiting for the car to
drive through the gate), and ’lowering’ (the arm). To keep the figure from being too cluttered,
we do not label each arc with every possible input that would cause that transition to be made:
instead, we give a condition (think of it as a Boolean expression) that, if true, would cause the
transition to be followed. The conditions on the arcs leading out of each state cover all the possible
inputs, so the machine remains completely well specified.

raising

lowering

raisedwaiting

not top / raise

carAtGate / raise
top / nop

carJustExited / lowerbottom / nop

not bottom / lower

not carJustExited / nopnot carAtGate / nop

Figure 4.3 State transition diagram for parking gate controller.

Pause to try 4.1. How many possible inputs are there?

A: 12.

Image by MIT OpenCourseWare.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 134

Here is a simple state machine that implements the controller for the parking gate. For com­
pactness, the getNextValues method starts by determining the next state of the gate. Then,
depending on the next state, the generateOutput method selects the appropriate output.

class SimpleParkingGate (SM):
startState = ’waiting’

def generateOutput(self, state):

if state == ’raising’:

return ’raise’

elif state == ’lowering’:

return ’lower’

else:

return ’nop’

def getNextValues(self, state, inp):

(gatePosition, carAtGate, carJustExited) = inp

if state == ’waiting’ and carAtGate:

nextState = ’raising’

elif state == ’raising’ and gatePosition == ’top’:

nextState = ’raised’

elif state == ’raised’ and carJustExited:

nextState = ’lowering’

elif state == ’lowering’ and gatePosition == ’bottom’:

nextState = ’waiting’

else:

nextState = state

return (nextState, self.generateOutput(nextState))

In the situations where the state does not change (that is, when the arcs lead back to the same
state in the diagram), we do not explicitly specify the next state in the code: instead, we cover it in
the else clause, saying that unless otherwise specified, the state stays the same. So, for example,
if the state is raising but the gatePosition is not yet top, then the state simply stays raising
until the top is reached.

>>> spg = SimpleParkingGate()
>>> spg.transduce(testInput, verbose = True)
Start state: waiting
In: (’bottom’, False, False) Out: nop Next State: waiting
In: (’bottom’, True, False) Out: raise Next State: raising
In: (’bottom’, True, False) Out: raise Next State: raising
In: (’middle’, True, False) Out: raise Next State: raising
In: (’middle’, True, False) Out: raise Next State: raising
In: (’middle’, True, False) Out: raise Next State: raising
In: (’top’, True, False) Out: nop Next State: raised
In: (’top’, True, False) Out: nop Next State: raised
In: (’top’, True, False) Out: nop Next State: raised
In: (’top’, True, True) Out: lower Next State: lowering
In: (’top’, True, True) Out: lower Next State: lowering
In: (’top’, True, False) Out: lower Next State: lowering
In: (’middle’, True, False) Out: lower Next State: lowering
In: (’middle’, True, False) Out: lower Next State: lowering
In: (’middle’, True, False) Out: lower Next State: lowering

Exercise

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 135

In: (’bottom’, True, False) Out: nop Next State: waiting

In: (’bottom’, True, False) Out: raise Next State: raising

[’nop’, ’raise’, ’raise’, ’raise’, ’raise’, ’raise’, ’nop’, ’nop’, ’nop’, ’lower’, ’lower’,

’lower’, ’lower’, ’lower’, ’lower’, ’nop’, ’raise’]

4.1. What would the code for this machine look like if it were written without
using the generateOutput method?

4.2 Basic combination and abstraction of state machines
In the previous section, we studied the definition of a primitive state machine, and saw a number
of examples. State machines are useful for a wide variety of problems, but specifying complex
machines by explicitly writing out their state transition functions can be quite tedious. Ultimately,
we will want to build large state-machine descriptions compositionally, by specifying primitive
machines and then combining them into more complex systems. We will start here by looking at
ways of combining state machines.

We can apply our PCAP (primitive, combination, abstraction, pattern) methodology, to build
more complex SMs out of simpler ones. In the rest of this section we consider “dataflow” com­
positions, where inputs and outputs of primitive machines are connected together; after that, we
consider “conditional” compositions that make use of different sub-machines depending on the
input to the machine, and finally “sequential” compositions that run one machine after another.

4.2.1 Cascade composition
In cascade composition, we take two machines and use the output of the first one as the input
to the second, as shown in figure 4.4. The result is a new composite machine, whose input vo­
cabulary is the input vocabulary of the first machine and whose output vocabulary is the output
vocabulary of the second machine. It is, of course, crucial that the output vocabulary of the first
machine be the same as the input vocabulary of the second machine.

m1 m2o1 = i2i1 o2

Cascade(m1, m2)

Figure 4.4 Cascade composition of state machines

Recalling the Delay machine from the previous section, let’s see what happens if we make the
cascade composition of two delay machines. Let m1 be a delay machine with initial value 99

and m2 be a delay machine with initial value 22. Then Cascade(m1, m2) is a new state machine,
constructed by making the output of m1 be the input of m2. Now, imagine we feed a sequence of
values, 3, 8, 2, 4, 6, 5, into the composite machine, m. What will come out? Let’s try to understand
this by making a table of the states and values at different times:

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 136

time 0 1 2 3 4 5 6

m1 input 3 8 2 4 6 5
m1 state 99 3 8 2 4 6 5

m1 output 99 3 8 2 4 6
m2 input 99 3 8 2 4 6
m2 state 22 99 3 8 2 4 6

m2 output 22 99 3 8 2 4

The output sequence is 22, 99, 3, 8, 2, 4, which is the input sequence, delayed by two time steps.

Another way to think about cascade composition is as follows. Let the input to m1 at time t be
called i1[t] and the output of m1 at time t be called o1[t]. Then, we can describe the workings of
the delay machine in terms of an equation:

o1[t] = i1[t − 1] for all values of t > 0;

o1[0] = init1

that is, that the output value at every time t is equal to the input value at the previous time step.
You can see that in the table above. The same relation holds for the input and output of m2:

o2[t] = i2[t − 1] for all values of t > 0.

o2[0] = init2

Now, since we have connected the output of m1 to the input of m2, we also have that i2[t] = o1[t]

for all values of t. This lets us make the following derivation:

o2[t] = i2[t − 1]

= o1[t − 1]

= i1[t − 2]

This makes it clear that we have built a “delay by two” machine, by cascading two single delay
machines.

As with all of our systems of combination, we will be able to form the cascade composition not
only of two primitive machines, but of any two machines that we can make, through any set of
compositions of primitive machines.

Here is the Python code for an Increment machine. It is a pure function whose output at time t
is just the input at time t plus the constant incr. The safeAdd function is the same as addition, if
the inputs are numbers. We will see, later, why it is important.

class Increment(SM):
def __init__(self, incr):

self.incr = incr
def getNextState(self, state, inp):

return safeAdd(inp, self.incr)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 137

Exercise 4.2. Derive what happens when you cascade two delay-by-two machines?

Exercise 4.3. What is the difference between these two machines?

>>> foo1 = sm.Cascade(sm.Delay(100), Increment(1))
>>> foo2 = sm.Cascade(Increment(1), sm.Delay(100))

Demonstrate by drawing a table of their inputs, states, and outputs, over
time.

4.2.2 Parallel composition
In parallel composition, we take two machines and run them “side by side”. They both take the
same input, and the output of the composite machine is the pair of outputs of the individual
machines. The result is a new composite machine, whose input vocabulary is the same as the
input vocabulary of the component machines (which is the same for both machines) and whose
output vocabulary is pairs of elements, the first from the output vocabulary of the first machine
and the second from the output vocabulary of the second machine. Figure 4.5 shows two types
of parallel composition; in this section we are talking about the first type.

m1

m2

i

o2

Parallel(m1, m2)

o1 m1

m2

i1

o2

Parallel2(m1, m2)

o1

i2

Figure 4.5 Parallel and Parallel2 compositions of state machines.

In Python, we can define a new class of state machines, called Parallel, which is a subclass of
SM. To make an instance of Parallel, we pass two SMs of any type into the initializer. The state of
the parallel machine is a pair consisting of the states of the constituent machines. So, the starting
state is the pair of the starting states of the constituents.

class Parallel (SM):
def __init__(self, sm1, sm2):

self.m1 = sm1
self.m2 = sm2
self.startState = (sm1.startState, sm2.startState)

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 138

To get a new state of the composite machine, we just have to get new states for each of the con­
stituents, and return the pair of them; similarly for the outputs.

def getNextValues(self, state, inp):

(s1, s2) = state

(newS1, o1) = self.m1.getNextValues(s1, inp)

(newS2, o2) = self.m2.getNextValues(s2, inp)

return ((newS1, newS2), (o1, o2))

Parallel2
Sometimes we will want a variant on parallel combination, in which rather than having the input
be a single item which is fed to both machines, the input is a pair of items, the first of which is
fed to the first machine and the second to the second machine. This composition is shown in the
second part of figure 4.5.

Here is a Python class that implements this two-input parallel composition. It can inherit the
__init__ method from Parallel, so use Parallel as the superclass, and we only have to define
two methods.

class Parallel2 (Parallel):
def getNextValues(self, state, inp):

(s1, s2) = state

(i1, i2) = splitValue(inp)

(newS1, o1) = self.m1.getNextValues(s1, i1)

(newS2, o2) = self.m2.getNextValues(s2, i2)

return ((newS1, newS2), (o1, o2))

Later, when dealing with feedback systems (section section 4.2.3), we will need to be able to deal
with ’undefined’ as an input. If the Parallel2 machine gets an input of ’undefined’, then
we want to pass ’undefined’ into the constituent machines. We make our code more beautiful
by defining the helper function below, which is guaranteed to return a pair, if its argument is
either a pair or ’undefined’. 33

def splitValue(v):

if v == ’undefined’:

return (’undefined’, ’undefined’)

else:

return v

ParallelAdd
The ParallelAdd state machine combination is just like Parallel, except that it has a single
output whose value is the sum of the outputs of the constituent machines. It is straightforward to
define:

33	 We are trying to make the code examples we show here as simple and clear as possible; if we were writing code for
actual deployment, we would check and generate error messages for all sorts of potential problems (in this case, for
instance, if v is neither None nor a two-element list or tuple.)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 139

class ParallelAdd (Parallel):
def getNextValues(self, state, inp):

(s1, s2) = state

(newS1, o1) = self.m1.getNextValues(s1, inp)

(newS2, o2) = self.m2.getNextValues(s2, inp)

return ((newS1, newS2), o1 + o2)

4.2.3 Feedback composition

m

Feedback(m)

o m

Feedback2(m)

oi

Figure 4.6 Two forms of feedback composition.

Another important means of combination that we will use frequently is the feedback combinator,
in which the output of a machine is fed back to be the input of the same machine at the next step,
as shown in figure 4.6. The first value that is fed back is the output associated with the initial state
of the machine on which we are operating. It is crucial that the input and output vocabularies of
the machine are the same (because the output at step t will be the input at step t + 1). Because
we have fed the output back to the input, this machine does not consume any inputs; but we will
treat the feedback value as an output of this machine.

Here is an example of using feedback to make a machine that counts. We can start with a simple
machine, an incrementer, that takes a number as input and returns that same number plus 1 as
the output. By itself, it has no memory. Here is its formal description:

S = numbers

I = numbers

O = numbers

n(s, i) = i + 1

o(s, i) = n(s, i)

s0 = 0

What would happen if we performed the feedback operation on this machine? We can try to
understand this in terms of the input/output equations. From the definition of the increment
machine, we have

o[t] = i[t] + 1 .

And if we connect the input to the output, then we will have

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 140

i[t] = o[t] .

And so, we have a problem; these equations cannot be satisfied.

A crucial requirement for applying feedback to a machine is: that machine must not have a direct
dependence of its output on its input.

Incr Delay(0)

Counter

Figure 4.7 Counter made with feedback and serial combination of an incrementer and a delay.

We have already explored a Delay machine, which delays its output by one step. We can delay
the result of our incrementer, by cascading it with a Delay machine, as shown in figure 4.7. Now,
we have the following equations describing the system:

oi[t] = ii[t] + 1

od[t] = id[t − 1]

ii[t] = od[t]

id[t] = oi[t]

The first two equations describe the operations of the increment and delay boxes; the second two
describe the wiring between the modules. Now we can see that, in general,

oi[t] = ii[t] + 1

oi[t] = od[t] + 1

oi[t] = id[t − 1] + 1

oi[t] = oi[t − 1] + 1

that is, that the output of the incrementer is going to be one greater on each time step.

Exercise 4.4.	 How could you use feedback and a negation primitive machine (which
is a pure function that takes a Boolean as input and returns the negation
of that Boolean) to make a machine whose output alternates between true
and false.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 141

4.2.3.1 Python Implementation
Following is a Python implementation of the feedback combinator, as a new subclass of SM that
takes, at initialization time, a state machine.

class Feedback (SM):
def __init__(self, sm):

self.m = sm

self.startState = self.m.startState

The starting state of the feedback machine is just the state of the constituent machine.

Generating an output for the feedback machine is interesting: by our hypothesis that the output
of the constituent machine cannot depend directly on the current input, it means that, for the
purposes of generating the output, we can actually feed an explicitly undefined value into the
machine as input. Why would we do this? The answer is that we do not know what the input
value should be (in fact, it is defined to be the output that we are trying to compute).

We must, at this point, add an extra condition on our getNextValues methods. They have to
be prepared to accept ’undefined’ as an input. If they get an undefined input, they should
return ’undefined’ as an output. For convenience, in our files, we have defined the procedures
safeAdd and safeMul to do addition and multiplication, but passing through ’undefined’ if it
occurs in either argument.

So: if we pass ’undefined’ into the constituent machine’s getNextValues method, we must
not get ’undefined’ back as output; if we do, it means that there is an immediate dependence
of the output on the input. Now we know the output o of the machine.

To get the next state of the machine, we get the next state of the constituent machine, by taking
the feedback value, o, that we just computed and using it as input for getNextValues. This
will generate the next state of the feedback machine. (Note that throughout this process inp is
ignored—a feedback machine has no input.)

def getNextValues(self, state, inp):

(ignore, o) = self.m.getNextValues(state, ’undefined’)

(newS, ignore) = self.m.getNextValues(state, o)

return (newS, o)

Now, we can construct the counter we designed. The Increment machine, as we saw in its
definition, uses a safeAdd procedure, which has the following property: if either argument is
’undefined’, then the answer is ’undefined’; otherwise, it is the sum of the inputs.

def makeCounter(init, step):

return sm.Feedback(sm.Cascade(Increment(step), sm.Delay(init)))

>>> c = makeCounter(3, 2)

>>> c.run(verbose = True)

Start state: (None, 3)

Step: 0

Feedback_96

Cascade_97

Increment_98 In: 3 Out: 5 Next State: 5

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 142

Delay_99 In: 5 Out: 3 Next State: 5
Step: 1
Feedback_96

Cascade_97

Increment_98 In: 5 Out: 7 Next State: 7

Delay_99 In: 7 Out: 5 Next State: 7

Step: 2
Feedback_96

Cascade_97

Increment_98 In: 7 Out: 9 Next State: 9

Delay_99 In: 9 Out: 7 Next State: 9

Step: 3
Feedback_96

Cascade_97

Increment_98 In: 9 Out: 11 Next State: 11

Delay_99 In: 11 Out: 9 Next State: 11

Step: 4
Feedback_96

Cascade_97

Increment_98 In: 11 Out: 13 Next State: 13

Delay_99 In: 13 Out: 11 Next State: 13

...

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

(The numbers, like 96 in Feedback_96 are not important; they are just tags generated internally
to indicate different instances of a class.)

Exercise 4.5. Draw state tables illustrating whether the following machines are differ­
ent, and if so, how:

m1 = sm.Feedback(sm.Cascade(sm.Delay(1),Increment(1)))
m2 = sm.Feedback(sm.Cascade(Increment(1), sm.Delay(1)))

4.2.3.2 Fibonacci
Now, we can get very fancy. We can generate the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, etc),
in which the first two outputs are 1, and each subsequent output is the sum of the two previous
outputs, using a combination of very simple machines. Basically, we have to arrange for the
output of the machine to be fed back into a parallel combination of elements, one of which delays
the value by one step, and one of which delays by two steps. Then, those values are added, to
compute the next output. Figure 4.8 shows a diagram of one way to construct this system.

The corresponding Python code is shown below. First, we have to define a new component ma­
chine. An Adder takes pairs of numbers (appearing simultaneously) as input, and immediately
generates their sum as output.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 143

Delay(1) Delay(0)

Fibonacci

Delay(1)

+

Figure 4.8 Machine to generate the Fibonacci sequence.

class Adder(SM):
def getNextState(self, state, inp):

(i1, i2) = splitValue(inp)

return safeAdd(i1, i2)

Now, we can define our fib machine. It is a great example of building a complex machine out of
very nearly trivial components. In fact, we will see in the next module that there is an interesting
and important class of machines that can be constructed with cascade and parallel compositions
of delay, adder, and gain machines. It is crucial for the delay machines to have the right values
(as shown in the figure) in order for the sequence to start off correctly.

>>> fib = sm.Feedback(sm.Cascade(sm.Parallel(sm.Delay(1),
sm.Cascade(sm.Delay(1), sm.Delay(0))),

Adder()))

>>> fib.run(verbose = True)
Start state: ((1, (1, 0)), None)
Step: 0
Feedback_100

Cascade_101

Parallel_102

Delay_103 In: 1 Out: 1 Next State: 1

Cascade_104

Delay_105 In: 1 Out: 1 Next State: 1
Delay_106 In: 1 Out: 0 Next State: 1

Adder_107 In: (1, 0) Out: 1 Next State: 1
Step: 1
Feedback_100

Cascade_101
Parallel_102

Delay_103 In: 2 Out: 1 Next State: 2

Cascade_104

Delay_105 In: 2 Out: 1 Next State: 2
Delay_106 In: 1 Out: 1 Next State: 1

Adder_107 In: (1, 1) Out: 2 Next State: 2
Step: 2
Feedback_100

Cascade_101
Parallel_102

Delay_103 In: 3 Out: 2 Next State: 3

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 144

Cascade_104

Delay_105 In: 3 Out: 2 Next State: 3

Delay_106 In: 2 Out: 1 Next State: 2

Adder_107 In: (2, 1) Out: 3 Next State: 3
Step: 3
Feedback_100

Cascade_101
Parallel_102

Delay_103 In: 5 Out: 3 Next State: 5

Cascade_104

Delay_105 In: 5 Out: 3 Next State: 5
Delay_106 In: 3 Out: 2 Next State: 3

Adder_107 In: (3, 2) Out: 5 Next State: 5
...

[1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Exercise 4.6. What would we have to do to this machine to get the sequence [1, 1, 2,
3, 5, ...]?

Exercise 4.7. Define fib as a composition involving only two delay components and an
adder. You might want to use an instance of the Wire class.
A Wire is the completely passive machine, whose output is always in­
stantaneously equal to its input. It is not very interesting by itself, but
sometimes handy when building things.

class Wire(SM):
def getNextState(self, state, inp):

return inp

Exercise 4.8. Use feedback and a multiplier (analogous to Adder) to make a machine
whose output doubles on every step.

Exercise 4.9. Use feedback and a multiplier (analogous to Adder) to make a machine
whose output squares on every step.

4.2.3.3 Feedback2
The second part of figure 4.6 shows a combination we call feedback2 : it assumes that it takes a
machine with two inputs and one output, and connects the output of the machine to the second
input, resulting in a machine with one input and one output.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 145

Feedback2 is very similar to the basic feedback combinator, but it gives, as input to the constituent
machine, the pair of the input to the machine and the feedback value.

class Feedback2 (Feedback):
def getNextValues(self, state, inp):

(ignore, o) = self.m.getNextValues(state, (inp, ’undefined’))
(newS, ignore) = self.m.getNextValues(state, (inp, o))
return (newS, o)

4.2.3.4 FeedbackSubtract and FeedbackAdd
In feedback addition composition, we take two machines and connect them as shown below:

m1

m2

+

If m1 and m2 are state machines, then you can create their feedback addition composition with

newM = sm.FeedbackAdd(m1, m2)

Now newM is itself a state machine. So, for example,

newM = sm.FeedbackAdd(sm.R(0), sm.Wire())

makes a machine whose output is the sum of all the inputs it has ever had (remember that sm.R is

shorthand for sm.Delay). You can test it by feeding it a sequence of inputs; in the example below,
it is the numbers 0 through 9:

>>> newM.transduce(range(10))
[0, 0, 1, 3, 6, 10, 15, 21, 28, 36]

Feedback subtraction composition is the same, except the output of m2 is subtracted from the
input, to get the input to m1.

m1

m2

+
−

Note that if you want to apply one of the feedback operators in a situation where there is only one
machine, you can use the sm.Gain(1.0) machine (defined section 4.1.2.2.1), which is essentially
a wire, as the other argument.

4.2.3.5 Factorial

We will do one more tricky example, and illustrate the use of Feedback2. What if we
wanted to generate the sequence of numbers {1!, 2!, 3!, 4!, . . .} (where k! = 1 2 3 . . . k)?· · ·
We can do so by multiplying the previous value of the sequence by a number equal to the

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 146

“index” of the sequence. Figure 4.9 shows the structure of a machine for solving this problem. It
uses a counter (which is, as we saw before, made with feedback around a delay and increment)
as the input to a machine that takes a single input, and multiplies it by the output value of the
machine, fed back through a delay.

Incr Delay(1)

Factorial

* Delay(1)

Counter

Figure 4.9 Machine to generate the Factorial sequence.

Here is how to do it in Python; we take advantage of having defined counter machines to abstract
away from them and use that definition here without thinking about its internal structure. The
initial values in the delays get the series started off in the right place. What would happen if we
started at 0?

fact = sm.Cascade(makeCounter(1, 1),
sm.Feedback2(sm.Cascade(Multiplier(), sm.Delay(1))))

>>> fact.run(verbose = True)
Start state: ((None, 1), (None, 1))
Step: 0
Cascade_1

Feedback_2

Cascade_3

Increment_4 In: 1 Out: 2 Next State: 2

Delay_5 In: 2 Out: 1 Next State: 2

Feedback2_6
Cascade_7

Multiplier_8 In: (1, 1) Out: 1 Next State: 1

Delay_9 In: 1 Out: 1 Next State: 1

Step: 1
Cascade_1

Feedback_2
Cascade_3

Increment_4 In: 2 Out: 3 Next State: 3

Delay_5 In: 3 Out: 2 Next State: 3

Feedback2_6
Cascade_7

Multiplier_8 In: (2, 1) Out: 2 Next State: 2

Delay_9 In: 2 Out: 1 Next State: 2

Step: 2
Cascade_1

Feedback_2
Cascade_3

Increment_4 In: 3 Out: 4 Next State: 4

Delay_5 In: 4 Out: 3 Next State: 4

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 147

Feedback2_6
Cascade_7

Multiplier_8 In: (3, 2) Out: 6 Next State: 6

Delay_9 In: 6 Out: 2 Next State: 6

Step: 3

Cascade_1

Feedback_2

Cascade_3

Increment_4 In: 4 Out: 5 Next State: 5

Delay_5 In: 5 Out: 4 Next State: 5

Feedback2_6
Cascade_7

Multiplier_8 In: (4, 6) Out: 24 Next State: 24

Delay_9 In: 24 Out: 6 Next State: 24

...

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

It might bother you that we get a 1 as the zeroth element of the sequence, but it is reasonable
as a definition of 0!, because 1 is the multiplicative identity (and is often defined that way by
mathematicians).

4.2.4 Plants and controllers
One common situation in which we combine machines is to simulate the effects of coupling a
controller and a so-called “plant”. A plant is a factory or other external environment that we
might wish to control. In this case, we connect two state machines so that the output of the plant
(typically thought of as sensory observations) is input to the controller, and the output of the
controller (typically thought of as actions) is input to the plant. This is shown schematically in
figure 4.10. For example, when you build a Soar brain that interacts with the robot, the robot (and
the world in which it is operating) is the “plant” and the brain is the controller. We can build a
coupled machine by first connecting the machines in a cascade and then using feedback on that
combination.

Plant

Controller

Figure 4.10 Two coupled machines.

As a concrete example, let’s think about a robot driving straight toward a wall. It has a distance
sensor that allows it to observe the distance to the wall at time t, d[t], and it desires to stop at
some distance ddesired. The robot can execute velocity commands, and we program it to use the
following rule to set its velocity at time t, based on its most recent sensor reading:

o(s) =

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 148

v[t] = K(ddesired − d[t − 1]) .

This controller can also be described as a state machine, whose input sequence is the observed
values of d and whose output sequence is the values of v.

S = numbers

I = numbers

O = numbers

n(s, i) = K(ddesired − i)

s

s0 = dinit

Now, we can think about the “plant”; that is, the relationship between the robot and the world.
The distance of the robot to the wall changes at each time step depending on the robot’s forward
velocity and the length of the time steps. Let δT be the length of time between velocity commands
issued by the robot. Then we can describe the world with the equation:

d[t] = d[t − 1] − δTv[t − 1] .

which assumes that a positive velocity moves the robot toward the wall (and therefore decreases
the distance). This system can be described as a state machine, whose input sequence is the values
of the robot’s velocity, v, and whose output sequence is the values of its distance to the wall, d.

Finally, we can couple these two systems, as for a simulator, to get a single state machine with no
inputs. We can observe the sequence of internal values of d and v to understand how the system
is behaving.

In Python, we start by defining the controller machine; the values k and dDesired are constants
of the whole system.

k = -1.5
dDesired = 1.0
class WallController(SM):

def getNextState(self, state, inp):
return safeMul(k, safeAdd(dDesired, safeMul(-1, inp)))

The output being generated is actually k * (dDesired - inp), but because this method is go­
ing to be used in a feedback machine, it might have to deal with ’undefined’ as an input. It has
no delay built into it.

Think about why we want k to be negative. What happens when the robot is closer to the wall
than desired? What happens when it is farther from the wall than desired?

Now, we can define a class that describes the behavior of the “plant”:

deltaT = 0.1
class WallWorld(SM):

startState = 5
def getNextValues(self, state, inp):

return (state - deltaT * inp, state)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 149

Setting startState = 5 means that the robot starts 5 meters from the wall. Note that the output
of this machine does not depend instantaneously on the input; so there is a delay in it.

Now, we can defined a general combinator for coupling two machines, as in a plant and controller:

def coupledMachine(m1, m2):

return sm.Feedback(sm.Cascade(m1, m2))

We can use it to connect our controller to the world, and run it:

>>> wallSim = coupledMachine(WallController(), WallWorld())

>>> wallSim.run(30)

[5, 4.4000000000000004, 3.8900000000000001, 3.4565000000000001,

3.088025, 2.77482125, 2.5085980624999999, 2.2823083531249999,

2.0899621001562498, 1.9264677851328122, 1.7874976173628905,

1.6693729747584569, 1.5689670285446884, 1.483621974262985,

1.4110786781235374, 1.3494168764050067, 1.2970043449442556,

1.2524536932026173, 1.2145856392222247, 1.1823977933388909,

1.1550381243380574, 1.1317824056873489, 1.1120150448342465,

1.0952127881091096, 1.0809308698927431, 1.0687912394088317,

1.058472553497507, 1.049701670472881, 1.0422464199019488,

1.0359094569166565]

Because WallWorld is the second machine in the cascade, its output is the output of the whole
machine; so, we can see that the distance from the robot to the wall is converging monotonically
to dDesired (which is 1).

Exercise 4.10. What kind of behavior do you get with different values of k?

4.2.5 Conditionals
We might want to use different machines depending on something that is happening in the out­
side world. Here we describe three different conditional combinators, that make choices, at the
run-time of the machine, about what to do.

4.2.6 Switch
We will start by considering a conditional combinator that runs two machines in parallel, but
decides on every input whether to send the input into one machine or the other. So, only one of
the parallel machines has its state updated on each step. We will call this switch, to emphasize the
fact that the decision about which machine to execute is being re-made on every step.

Implementing this requires us to maintain the states of both machines, just as we did for parallel
combination. The getNextValues method tests the condition and then gets a new state and
output from the appropriate constituent machine; it also has to be sure to pass through the old
state for the constituent machine that was not updated this time.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 150

class Switch (SM):
def __init__(self, condition, sm1, sm2):

self.m1 = sm1

self.m2 = sm2

self.condition = condition

self.startState = (self.m1.startState, self.m2.startState)

def getNextValues(self, state, inp):

(s1, s2) = state

if self.condition(inp):
(ns1, o) = self.m1.getNextValues(s1, inp)

return ((ns1, s2), o)

else:

(ns2, o) = self.m2.getNextValues(s2, inp)

return ((s1, ns2), o)

Multiplex
The switch combinator takes care to only update one of the component machines; in some other
cases, we want to update both machines on every step and simply use the condition to select the
output of one machine or the other to be the current output of the combined machine.

This is a very small variation on Switch, so we will just implement it as a subclass.

class Mux (Switch):
def getNextValues(self, state, inp):

(s1, s2) = state

(ns1, o1) = self.m1.getNextValues(s1, inp)

(ns2, o2) = self.m2.getNextValues(s2, inp)

if self.condition(inp):

return ((ns1, ns2), o1)

else:

return ((ns1, ns2), o2)

Exercise 4.11. What is the result of running these two machines

m1 = Switch(lambda inp: inp > 100,
Accumulator(),
Accumulator())

m2 = Mux(lambda inp: inp > 100,
Accumulator(),
Accumulator())

on the input

[2, 3, 4, 200, 300, 400, 1, 2, 3]

Explain why they are the same or are different.

If

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 151

Feel free to skip this example; it is only useful in fairly complicated contexts.

The If combinator. It takes a condition, which is a function from the input to true or false,

and two machines. It evaluates the condition on the first input it receives. If the value

is true then it executes the first machine forever more; if it is false, then it executes the second

machine.

This can be straightforwardly implemented in Python; we will work through a slightly simplified
version of our code below. We start by defining an initializer that remembers the conditions and
the two constituent state machines.

class If (SM):
startState = (’start’, None)
def __init__(self, condition, sm1, sm2):

self.sm1 = sm1
self.sm2 = sm2
self.condition = condition

Because this machine does not have an input available at start time, it can not decide whether it
is going to execute sm1 or sm2. Ultimately, the state of the If machine will be a pair of values:
the first will indicate which constituent machine we are running and the second will be the state
of that machine. But, to start, we will be in the state (’start’, None), which indicates that the
decision about which machine to execute has not yet been made.

Now, when it is time to do a state update, we have an input. We destructure the state into its
two parts, and check to see if the first component is ’start’. If so, we have to make the decision
about which machine to execute. The method getFirstRealState first calls the condition on
the current input, to decide which machine to run; then it returns the pair of a symbol indicating
which machine has been selected and the starting state of that machine. Once the first real state is
determined, then that is used to compute a transition into an appropriate next state, based on the
input.

If the machine was already in a non-start state, then it just updates the constituent state, using the
already-selected constituent machine. Similarly, to generate an output, we have use the output
function of the appropriate machine, with special handling of the start state.

startState = (’start’, None)

def __init__(self, condition, sm1, sm2):

self.sm1 = sm1

self.sm2 = sm2

self.condition = condition

def getFirstRealState(self, inp):

if self.condition(inp):

return (’runningM1’, self.sm1.startState)

else:

return (’runningM2’, self.sm2.startState)

def getNextValues(self, state, inp):
(ifState, smState) = state
if ifState == ’start’:

(ifState, smState) = self.getFirstRealState(inp)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 152

if ifState == ’runningM1’:

(newS, o) = self.sm1.getNextValues(smState, inp)

return ((’runningM1’, newS), o)

else:

(newS, o) = self.sm2.getNextValues(smState, inp)

return ((’runningM2’, newS), o)

4.3 Terminating state machines and sequential compositions
So far, all the machines we have discussed run forever; or, at least, until we quit giving them
inputs. But in some cases, it is particularly useful to think of a process as consisting of a sequence
of processes, one executing until termination, and then another one starting. For example, you
might want to robot to clean first room A, and then clean room B; or, for it to search in an area
until it finds a person and then sound an alarm.

Temporal combinations of machines form a new, different PCAP system for state machines. Our
primitives will be state machines, as described above, but with one additional property: they will
have a termination or done function, d(s), which takes a state and returns true if the machine has
finished execution and false otherwise.

Rather than defining a whole new class of state machines (though we could do that), we will
just augment the SM class with a default method, which says that, by default, machines do not
terminate.

def done(self, state):

return False

Then, in the definition of any subclass of SM, you are free to implement your own done method
that will override this base one. The done method is used by state machine combinators that, for
example, run one machine until it is done, and then switch to running another one.

Here is an example terminating state machine (TSM) that consumes a stream of numbers; its
output is None on the first four steps and then on the fifth step, it generates the sum of the numbers
it has seen as inputs, and then terminates. It looks just like the state machines we have seen before,
with the addition of a done method. Its state consists of two numbers: the first is the number of
times the machine has been updated and the second is the total input it has accumulated so far.

class ConsumeFiveValues(SM):

startState = (0, 0) # count, total

def getNextValues(self, state, inp):

(count, total) = state

if count == 4:

return ((count + 1, total + inp), total + inp)

else:

return ((count + 1, total + inp), None)

def done(self, state):

(count, total) = state

return count == 5

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 153

Here is the result of running a simple example. We have modified the transduce method of SM
to stop when the machine is done.

>>> c5 = ConsumeFiveValues()

>>> c5.transduce([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], verbose = True)

Start state: (0, 0)

In: 1 Out: None Next State: (1, 1)

In: 2 Out: None Next State: (2, 3)

In: 3 Out: None Next State: (3, 6)

In: 4 Out: None Next State: (4, 10)

In: 5 Out: 15 Next State: (5, 15)

[None, None, None, None, 15]

Now we can define a new set of combinators that operate on TSMs. Each of these combina­
tors assumes that its constituent machines are terminating state machines, and are, themselves,
terminating state machines. We have to respect certain rules about TSMs when we do this. In
particular, it is not legal to call the getNextValues method on a TSM that says it is done. This
may or may not cause an actual Python error, but it is never a sensible thing to do, and may result
in meaningless answers.

4.3.1 Repeat
The simplest of the TSM combinators is one that takes a terminating state machine sm and repeats
it n times. In the Python method below, we give a default value of None for n, so that if no value
is passed in for n it will repeat forever.

class Repeat (SM):
def __init__(self, sm, n = None):

self.sm = sm

self.startState = (0, self.sm.startState)

self.n = n

The state of this machine will be the number of times the constituent machine has been executed
to completion, together with the current state of the constituent machine. So, the starting state is
a pair consisting of 0 and the starting state of the constituent machine.

Because we are going to, later, ask the constituent machine to generate an output, we are going
to adopt a convention that the constituent machine is never left in a state that is done, unless
the whole Repeat is itself done. If the constituent machine is done, then we will increment the
counter for the number of times we have repeated it, and restart it. Just in case the constituent
machine “wakes up” in a state that is done, we use a while loop here, instead of an if: we will
keep restarting this machine until the count runs out. Why? Because we promised not to leave
our constituent machine in a done state (so, for example, nobody asks for its output, when its
done), unless the whole repeat machine is done as well.

def advanceIfDone(self, counter, smState):
while self.sm.done(smState) and not self.done((counter, smState)):

counter = counter + 1
smState = self.sm.startState

return (counter, smState)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 154

To get the next state, we start by getting the next state of the constituent machine; then, we check
to see if the counter needs to be advanced and the machine restarted; the advanceIfDone method
handles this situation and returns the appropriate next state. The output of the Repeat machine
is just the output of the constituent machine. We just have to be sure to destructure the state of
the overall machine and pass the right part of it into the constituent.

def getNextValues(self, state, inp):

(counter, smState) = state

(smState, o) = self.sm.getNextValues(smState, inp)

(counter, smState) = self.advanceIfDone(counter, smState)

return ((counter, smState), o)

We know the whole Repeat is done if the counter is equal to n.

def done(self, state):

(counter, smState) = state

return counter == self.n

Now, we can see some examples of Repeat. As a primitive, here is a silly little example TSM. It
takes a character at initialization time. Its state is a Boolean, indicating whether it is done. It starts
up in state False (not done). Then it makes its first transition into state True and stays there. Its
output is always the character it was initialized with; it completely ignores its input.

class CharTSM (SM):
startState = False
def __init__(self, c):

self.c = c

def getNextValues(self, state, inp):

return (True, self.c)

def done(self, state):

return state

>>> a = CharTSM(’a’)

>>> a.run(verbose = True)

Start state: False

In: None Out: a Next State: True

[’a’]

See that it terminates after one output. But, now, we can repeat it several times.

>>> a4 = sm.Repeat(a, 4)

>>> a4.run()

[’a’, ’a’, ’a’, ’a’]

Exercise 4.12. Would it have made a difference if we had executed:

>>> sm.Repeat(CharTSM(’a’), 4).run()

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 155

Exercise 4.13. Monty P. thinks that the following call

>>> sm.Repeat(ConsumeFiveValues(), 3).transduce(range(100))

will generate a sequence of 14 Nones followed by the sum of the first 15
integers (starting at 0). R. Reticulatis disagrees. Who is right and why?

4.3.2 Sequence
Another useful thing to do with TSMs is to execute several different machines sequentially. That
is, take a list of TSMs, run the first one until it is done, start the next one and run it until it is done,
and so on. This machine is similar in style and structure to a Repeat TSM. Its state is a pair of
values: an index that says which of the constituent machines is currently being executed, and the
state of the current constituent.

Here is a Python class for creating a Sequence TSM. It takes as input a list of state machines; it
remembers the machines and number of machines in the list.

class Sequence (SM):
def __init__(self, smList):

self.smList = smList

self.startState = (0, self.smList[0].startState)

self.n = len(smList)

The initial state of this machine is the value 0 (because we start by executing the 0th constituent
machine on the list) and the initial state of that constituent machine.

The method for advancing is also similar that for Repeat. The only difference is that each time,
we start the next machine in the list of machines, until we have finished executing the last one.

def advanceIfDone(self, counter, smState):
while self.smList[counter].done(smState) and counter + 1 < self.n:

counter = counter + 1
smState = self.smList[counter].startState

return (counter, smState)

To get the next state, we ask the current constituent machine for its next state, and then, if it is
done, advance the state to the next machine in the list that is not done when it wakes up. The
output of the composite machine is just the output of the current constituent.

def getNextValues(self, state, inp):
(counter, smState) = state
(smState, o) = self.smList[counter].getNextValues(smState, inp)
(counter, smState) = self.advanceIfDone(counter, smState)
return ((counter, smState), o)

We have constructed this machine so that it always advances past any constituent machine that is
done; if, in fact, the current constituent machine is done, then the whole machine is also done.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 156

def done(self, state):

(counter, smState) = state

return self.smList[counter].done(smState)

We can make good use of the CharTSM to test our sequential combinator. First, we will try some­
thing simple:

>>> m = sm.Sequence([CharTSM(’a’), CharTSM(’b’), CharTSM(’c’)])

>>> m.run()

Start state: (0, False)

In: None Out: a Next State: (1, False)

In: None Out: b Next State: (2, False)

In: None Out: c Next State: (2, True)

[’a’, ’b’, ’c’]

Even in a test case, there is something unsatisfying about all that repetitive typing required to
make each individual CharTSM. If we are repeating, we should abstract. So, we can write a func­
tion that takes a string as input, and returns a sequential TSM that will output that string. It uses
a list comprehension to turn each character into a CharTSM that generates that character, and then
uses that sequence to make a Sequence.

def makeTextSequenceTSM(str):
return sm.Sequence([CharTSM(c) for c in str])

>>> m = makeTextSequenceTSM(’Hello World’)

>>> m.run(20, verbose = True)

Start state: (0, False)

In: None Out: H Next State: (1, False)

In: None Out: e Next State: (2, False)

In: None Out: l Next State: (3, False)

In: None Out: l Next State: (4, False)

In: None Out: o Next State: (5, False)

In: None Out: Next State: (6, False)

In: None Out: W Next State: (7, False)

In: None Out: o Next State: (8, False)

In: None Out: r Next State: (9, False)

In: None Out: l Next State: (10, False)

In: None Out: d Next State: (10, True)

[’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’]

We can also see that sequencing interacts well with the Repeat combinator.

>>> m = sm.Repeat(makeTextSequenceTSM(’abc’), 3)

>>> m.run(verbose = True)

Start state: (0, (0, False))

In: None Out: a Next State: (0, (1, False))

In: None Out: b Next State: (0, (2, False))

In: None Out: c Next State: (1, (0, False))

In: None Out: a Next State: (1, (1, False))

In: None Out: b Next State: (1, (2, False))

In: None Out: c Next State: (2, (0, False))

In: None Out: a Next State: (2, (1, False))

In: None Out: b Next State: (2, (2, False))

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 157

In: None Out: c Next State: (3, (0, False))

[’a’, ’b’, ’c’, ’a’, ’b’, ’c’, ’a’, ’b’, ’c’]

It is interesting to understand the state here. The first value is the number of times the constituent
machine of the Repeat machine has finished executing; the second value is the index of the se­
quential machine into its list of machines, and the last Boolean is the state of the CharTSM that is
being executed, which is an indicator for whether it is done or not.

4.3.3 RepeatUntil and Until
In order to use Repeat, we need to know in advance how many times we want to execute the
constituent TSM. Just as in ordinary programming, we often want to terminate when a particular
condition is met in the world. For this purpose, we can construct a new TSM combinator, called
RepeatUntil. It takes, at initialization time, a condition, which is a function from an input to
a Boolean, and a TSM. It runs the TSM to completion, then tests the condition on the input; if
the condition is true, then the RepeatUntil terminates; if it is false, then it runs the TSM to
completion again, tests the condition, etc.

Here is the Python code for implementing RepeatUntil. The state of this machine has two parts:
a Boolean indicating whether the condition is true, and the state of the constituent machine.

class RepeatUntil (SM):
def __init__(self, condition, sm):

self.sm = sm

self.condition = condition

self.startState = (False, self.sm.startState)

def getNextValues(self, state, inp):

(condTrue, smState) = state

(smState, o) = self.sm.getNextValues(smState, inp)

condTrue = self.condition(inp)

if self.sm.done(smState) and not condTrue:

smState = self.sm.getStartState()

return ((condTrue, smState), o)

def done(self, state):

(condTrue, smState) = state

return self.sm.done(smState) and condTrue

One important thing to note is that, in the RepeatUntil TSM the condition is only evaluated
when the constituent TSM is done. This is appropriate in some situations; but in other cases, we
would like to terminate the execution of a TSM if a condition becomes true at any single step of
the machine. We could easily implement something like this in any particular case, by defining
a special-purpose TSM class that has a done method that tests the termination condition. But,
because this structure is generally useful, we can define a general-purpose combinator, called
Until. This combinator also takes a condition and a constituent machine. It simply executes
the constituent machine, and terminates either when the condition becomes true, or when the
constituent machine terminates. As before, the state includes the value of the condition on the
last input and the state of the constituent machine.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 158

Note that this machine will never execute the constituent machine more than once; it will either
run it once to completion (if the condition never becomes true), or terminate it early.

Here are some examples of using RepeatUntil and Until. First, we run the ConsumeFive-
Values machine until the input is greater than 10. Because it only tests the condition when
ConsumeFiveValues is done, and the condition only becomes true on the 11th step, the Con­
sumeFiveValues machine is run to completion three times.

def greaterThan10 (x):
return x > 10

>>> m = sm.RepeatUntil(greaterThan10, ConsumeFiveValues())
>>> m.transduce(range(20), verbose = True)
Start state: (0, 0)
In: 0 Out: None Next State: (1, 0)
In: 1 Out: None Next State: (2, 1)
In: 2 Out: None Next State: (3, 3)
In: 3 Out: None Next State: (4, 6)
In: 4 Out: 10 Next State: (0, 0)
In: 5 Out: None Next State: (1, 5)
In: 6 Out: None Next State: (2, 11)
In: 7 Out: None Next State: (3, 18)
In: 8 Out: None Next State: (4, 26)
In: 9 Out: 35 Next State: (0, 0)
In: 10 Out: None Next State: (1, 10)
In: 11 Out: None Next State: (2, 21)
In: 12 Out: None Next State: (3, 33)
In: 13 Out: None Next State: (4, 46)
In: 14 Out: 60 Next State: (5, 60)
[None, None, None, None, 10, None, None, None, None, 35, None, None, None, None, 60]

If we do Until on the basic ConsumeFiveValues machine, then it just runs ConsumeFiveValues
until it terminates normally, because the condition never becomes true during this time.

>>> m = sm.Until(greaterThan10, ConsumeFiveValues())

>>> m.transduce(range(20), verbose = True)

Start state: (False, (0, 0))

In: 0 Out: None Next State: (False, (1, 0))

In: 1 Out: None Next State: (False, (2, 1))

In: 2 Out: None Next State: (False, (3, 3))

In: 3 Out: None Next State: (False, (4, 6))

In: 4 Out: 10 Next State: (False, (5, 10))

[None, None, None, None, 10]

However, if we change the termination condition, the execution will be terminated early. Note
that we can use a lambda expression directly as an argument; sometimes this is actually clearer
than defining a function with def, but it is fine to do it either way.

>>> m = sm.Until(lambda x: x == 2, ConsumeFiveValues())

>>> m.transduce(range(20), verbose = True)

Start state: (False, (0, 0))

In: 0 Out: None Next State: (False, (1, 0))

In: 1 Out: None Next State: (False, (2, 1))

In: 2 Out: None Next State: (True, (3, 3))

[None, None, None]

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 159

If we actually want to keep repeating ConsumeFiveValues() until the condition becomes true,
we can combine Until with Repeat. Now, we see that it executes the constituent machine mul­
tiple times, but terminates as soon as the condition is satisfied.

>>> m = sm.Until(greaterThan10, sm.Repeat(ConsumeFiveValues()))

>>> m.transduce(range(20), verbose = True)

Start state: (False, (0, (0, 0)))

In: 0 Out: None Next State: (False, (0, (1, 0)))

In: 1 Out: None Next State: (False, (0, (2, 1)))

In: 2 Out: None Next State: (False, (0, (3, 3)))

In: 3 Out: None Next State: (False, (0, (4, 6)))

In: 4 Out: 10 Next State: (False, (1, (0, 0)))

In: 5 Out: None Next State: (False, (1, (1, 5)))

In: 6 Out: None Next State: (False, (1, (2, 11)))

In: 7 Out: None Next State: (False, (1, (3, 18)))

In: 8 Out: None Next State: (False, (1, (4, 26)))

In: 9 Out: 35 Next State: (False, (2, (0, 0)))

In: 10 Out: None Next State: (False, (2, (1, 10)))

In: 11 Out: None Next State: (True, (2, (2, 21)))

[None, None, None, None, 10, None, None, None, None, 35, None, None]

4.4 Using a state machine to control the robot
This section gives an overview of how to control the robot with a state machine. For a much more
detailed description, see the Infrastructure Guide, which documents the io and util modules
in detail. The io module provides procedures and methods for interacting with the robot; the
util module provides procedures and methods for doing computations that are generally useful
(manipulating angles, dealing with coordinate frames, etc.)

We can implement a robot controller as a state machine whose inputs are instances of class
io.SensorInput, and whose outputs are instances of class io.Action.

Here is Python code for a brain that is controlled by the most basic of state machines. This machine
always emits the default action, io.Action(), which sets all of the output values to zero. When
the brain is set up, we create a “behavior”, which is a name we will use for a state machine that
transduces a stream of io.SensorInputs to a stream of io.Actions. Finally, we ask the behavior
to start.

Then, all we do in the step method of the robot is:

Read the sensors, by calling io.SensorInput() to get an instance that contains sonar and •
odometry readings;

• Feed that sensor input to the brain state machine, by calling its step method with that as input;
and

Take the io.Action that is generated by the brain as output, and call its execute method,
•
which causes it to actually send motor commands to the robot.

You can set the verbose flag to True if you want to see a lot of output on each step for debugging.

Inside a Soar brain, we have access to an object robot, which persists during the entire execution
of the brain, and gives us a place to store important objects (like the state machine that will be
doing all the work).

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 160

import sm

import io

class StopSM(sm.SM):

def getNextValues(self, state, inp):

return (None, io.Action())

def setup():

robot.behavior = StopSM()

robot.behavior.start()

def step():

robot.behavior.step(io.SensorInput(), verbose = False).execute()

In the following sections we will develop two simple machines for controlling a robot to move a
fixed distance or turn through a fixed angle. Then we will put them together and explore why it
can be useful to have the starting state of a machine depend on the input.

4.4.1 Rotate
Imagine that we want the robot to rotate a fixed angle, say 90 degrees, to the left of where it
is when it starts to run a behavior. We can use the robot’s odometry to measure approximately
where it is, in an arbitrary coordinate frame; but to know how much it has moved since we started,
we have to store some information in the state.

Here is a class that defines a Rotate state machine. It takes, at initialization time, a desired change
in heading.

class RotateTSM (SM):

rotationalGain = 3.0

angleEpsilon = 0.01

startState = ’start’

def __init__(self, headingDelta):

self.headingDelta = headingDelta

When it is time to start this machine, we would like to look at the robot’s current heading (theta),
add the desired change in heading, and store the result in our state as the desired heading. Then,
in order to test whether the behavior is done, we want to see whether the current heading is close
enough to the desired heading. Because the done method does not have access to the input of the
machine (it is a property only of states), we need to include the current theta in the state. So, the
state of the machine is (thetaDesired, thetaLast).

Thus, the getNextValues method looks at the state; if it is the special symbol ’start’, it means
that the machine has not previously had a chance to observe the input and see what its current
heading is, so it computes the desired heading (by adding the desired change to the current head­
ing, and then calling a utility procedure to be sure the resulting angle is between plus and minus
π), and returns it and the current heading. Otherwise, we keep the thetaDesired component
of the state, and just get a new value of theta out of the input. We generate an action with a

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 161

rotational velocity that will rotate toward the desired heading with velocity proportional to the
magnitude of the angular error.

def getNextValues(self, state, inp):

currentTheta = inp.odometry.theta

if state == ’start’:

thetaDesired = \

util.fixAnglePlusMinusPi(currentTheta + self.headingDelta)

else:

(thetaDesired, thetaLast) = state

newState = (thetaDesired, currentTheta)

action = io.Action(rvel = self.rotationalGain * \

util.fixAnglePlusMinusPi(thetaDesired - currentTheta))

return (newState, action)

Finally, we have to say which states are done. Clearly, the ’start’ state is not done; but we are
done if the most recent theta from the odometry is within some tolerance, self.angleEpsilon,
of the desired heading.

def done(self, state):

if state == ’start’:

return False

else:

(thetaDesired, thetaLast) = state
return util.nearAngle(thetaDesired, thetaLast, self.angleEpsilon)

Exercise 4.14. Change this machine so that it rotates through an angle, so you could give
it 2 pi or minus 2 pi to have it rotate all the way around.

4.4.2 Forward
Moving the robot forward a fixed distance is similar. In this case, we remember the robot’s x
and y coordinates when it starts, and drive straight forward until the distance between the initial
position and the current position is close to the desired distance. The state of the machine is the
robot’s starting position and its current position.

class ForwardTSM (SM):

forwardGain = 1.0

distTargetEpsilon = 0.01

startState = ’start’

def __init__(self, delta):

self.deltaDesired = delta

def getNextValues(self, state, inp):

currentPos = inp.odometry.point()

if state == ’start’:

print "Starting forward", self.deltaDesired

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 162

startPos = currentPos

else:

(startPos, lastPos) = state
newState = (startPos, currentPos)
error = self.deltaDesired - startPos.distance(currentPos)
action = io.Action(fvel = self.forwardGain * error)
return (newState, action)

def done(self, state):

if state == ’start’:

return False

else:

(startPos, lastPos) = state
return util.within(startPos.distance(lastPos),

self.deltaDesired,
self.distTargetEpsilon)

4.4.3 Square Spiral
Imagine we would like to have the robot drive in a square spiral, similar to the one shown in
figure 4.11. One way to approach this problem is to make a “low-level” machine that can consume
a goal point and the sensor input and drive (in the absence of obstacles) to the goal point; and
then make a “high-level” machine that will keep track of where we are in the figure and feed goal
points to the low-level machine.

4.4.3.1 XYDriver
Here is a class that describes a machine that takes as input a series of pairs of goal points (ex­
pressed in the robot’s odometry frame) and sensor input structures. It generates as output a
series of actions. This machine is very nearly a pure function machine, which has the following
basic control structure:

• If the robot is headed toward the goal point, move forward.
• If it is not headed toward the goal point, rotate toward the goal point.

This decision is made on every step, and results in a robust ability to drive toward a point in
two-dimensional space.

For many uses, this machine does not need any state. But the modularity is nicer, in some cases,
if it has a meaningful done method, which depends only on the state. So, we will let the state
of this machine be whether it is done or not. It needs several constants to govern rotational and
forward speeds, and tolerances for deciding whether it is pointed close enough toward the target
and whether it has arrived close enough to the target.

class XYDriver(SM):

forwardGain = 2.0

rotationGain = 2.0

angleEps = 0.05

distEps = 0.02

startState = False

The getNextValues method embodies the control structure described above.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 163

-0.756 0.904

-0.756

0.903

Figure 4.11 Square spiral path of the robot using the methods in this section.

def getNextValues(self, state, inp):

(goalPoint, sensors) = inp

robotPose = sensors.odometry

robotPoint = robotPose.point()

robotTheta = robotPose.theta

if goalPoint == None:

return (True, io.Action())

headingTheta = robotPoint.angleTo(goalPoint)
if util.nearAngle(robotTheta, headingTheta, self.angleEps):

Pointing in the right direction, so move forward
r = robotPoint.distance(goalPoint)
if r < self.distEps:

We’re there
return (True, io.Action())

else:
return (False, io.Action(fvel = r * self.forwardGain))

else:

Rotate to point toward goal

headingError = util.fixAnglePlusMinusPi(\

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 164

headingTheta - robotTheta)
return (False, io.Action(rvel = headingError * self.rotationGain))

The state of the machine is just a boolean indicating whether we are done.

def done(self, state):

return state

4.4.3.2 Cascade approach
We make a spiral by building a machine that takes SensorInput objects as input and generates
pairs of subgoals and sensorinputs; such a machine can be cascaded with XYDriver to generate
a spiral.

Our implementation of this is a class called SpyroGyra. It takes the increment (amount that each
new side is larger than the previous) at initialization time. Its state consists of three components:

direction: one of ’north’, ’south’, ’east’, or ’west’, indicating which way the robot is traveling •

length: length in meters of the current line segment being followed •

subGoal: the point in the robot’s odometry frame that defines the end of the current line •
segment

It requires a tolerance to decide when the current subgoal point has been reached.

class SpyroGyra(SM):

distEps = 0.02

def __init__(self, incr):

self.incr = incr

self.startState = (’south’, 0, None)

If the robot is close enough to the subgoal point, then it is time to change the state. We increment
the side length, pick the next direction (counter clockwise around the cardinal compass direc­
tions), and compute the next subgoal point. The output is just the subgoal and the sensor input,
which is what the driver needs.

def getNextValues(self, state, inp):

(direction, length, subGoal) = state

robotPose = inp.odometry

robotPoint = robotPose.point()

if subGoal == None:

subGoal = robotPoint
if robotPoint.isNear(subGoal, self.distEps):

Time to change state

length = length + self.incr

if direction == ’east’:

direction = ’north’

subGoal.y += length

elif direction == ’north’:

direction = ’west’

subGoal.x -= length

elif direction == ’west’:

direction = ’south’

subGoal.y -= length

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 165

else: # south

direction = ’east’

subGoal.x += length

print ’new:’, direction, length, subGoal

return ((direction, length, subGoal),

(subGoal, inp))

Finally, to make the spiral, we just cascade these two machines together.

def spiroFlow(incr):
return sm.Cascade(SpyroGyra(incr), XYDriver())

Exercise 4.15. What explains the rounded sides of the path in figure 4.11?

4.5 Conclusion

State machines
State machines are such a general formalism, that a huge class of discrete-time systems can be
described as state machines. The system of defining primitive machines and combinations gives
us one discipline for describing complex systems. It will turn out that there are some systems
that are conveniently defined using this discipline, but that for other kinds of systems, other
disciplines would be more natural. As you encounter complex engineering problems, your job
is to find the PCAP system that is appropriate for them, and if one does not exist already, invent
one.

State machines are such a general class of systems that although it is a useful framework for
implementing systems, we cannot generally analyze the behavior of state machines. That is, we
can’t make much in the way of generic predictions about their future behavior, except by running
them to see what will happen.

In the next module, we will look at a restricted class of state machines, whose state is representable
as a bounded history of their previous states and previous inputs, and whose output is a linear
function of those states and inputs. This is a much smaller class of systems than all state machines,
but it is nonetheless very powerful. The important lesson will be that restricting the form of the
models we are using will allow us to make stronger claims about their behavior.

Knuth on Elevator Controllers
Donald E. Knuth is a computer scientist who is famous for, among other things, his series of
textbooks (as well as for TEX, the typesetting system we use to make all of our handouts), and a
variety of other contributions to theoretical computer science.

“It is perhaps significant to note that although the author had used the elevator system for years
and thought he knew it well, it wasn’t until he attempted to write this section that he realized
there were quite a few facts about the elevator’s system of choosing directions that he did not
know. He went back to experiment with the elevator six separate times, each time believing he

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 166

had finally achieved a complete understanding of its modus operandi. (Now he is reluctant to
ride it for fear some new facet of its operation will appear, contradicting the algorithms given.)
We often fail to realize how little we know about a thing until we attempt to simulate it on a
computer.”

The Art of Computer Programming, Donald E., Knuth, Vol 1. page 295. On the elevator system
in the Mathematics Building at Cal Tech. First published in 1968

4.6 Examples

4.6.1 Practice problem: Things
Consider the following program

def thing(inputList):

output = []

i = 0

for x in range(3):

y = 0
while y < 100 and i < len(inputList):

y = y + inputList[i]

output.append(y)

i = i + 1

return output

A.	 What is the value of

thing([1, 2, 3, 100, 4, 9, 500, 51, -2, 57, 103, 1, 1, 1, 1, -10, 207, 3, 1])

[1, 3, 6, 106, 4, 13, 513, 51, 49, 106]

It’s important to understand the loop structure of the Python program: It goes through (at
most) three times, and adds up the elements of the input list, generating a partial sum as
output on each step, and terminating the inner loop when the sum becomes greater than 100.

B.	 Write a single state machine class MySM such that MySM().transduce(inputList) gives the
same result as thing(inputList), if inputList is a list of numbers. Remember to include a
done method, that will cause it to terminate at the same time as thing.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 167

class MySM(sm.SM):

startState = (0,0)

def getNextValues(self, state, inp):

(x, y) = state

y += inp

if y >= 100:

return ((x + 1, 0), y)

return ((x, y), y)

def done(self, state):

(x, y) = state

return x >= 3

The most important step, conceptually, is deciding what the state of the machine will be.
Looking at the original Python program, we can see that we had to keep track of how many
times we had completed the outer loop, and then what the current partial sum was of the
inner loop.
The getNextValues method first increments the partial sum by the input value, and then
checks to see whether it’s time to reset. If so, it increments the ’loop counter’ (x) component
of the state and resets the partial sum to 0. It’s important to remember that the output of the
getNextValues method is a pair, containing the next state and the output.
The done method just checks to see whether we have finished three whole iterations.

C.	 Recall the definition of sm.Repeat(m, n): Given a terminating state machine m, it returns
a new terminating state machine that will execute the machine m to completion n times, and
then terminate.

Use sm.Repeat and a very simple state machine that you define to create a new state machine
MyNewSM, such that MyNewSM is equivalent to an instance of MySM.

class Sum(sm.SM):

startState = 0

def getNextValues(self, state, inp):

return (state + inp, state + inp)

def done(self, state):

return state > 100

myNewSM = sm.Repeat(Sum(), 3)

4.6.2 Practice problem: Inheritance and State Machines
Recall that we have defined a Python class sm.SM to represent state machines. Here we consider
a special type of state machine, whose states are always integers that start at 0 and increment by
1 on each transition. We can represent this new type of state machines as a Python subclass of
sm.SM called CountingStateMachine.

We wish to use the CountingStateMachine class to define new subclasses that each provide a
single new method getOutput(self, state, inp) which returns just the output for that state

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 168

and input; the CountingStateMachine will take care of managing and incrementing the state,
so its subclasses don’t have to worry about it.

Here is an example of a subclass of CountingStateMachine.

class CountMod5(CountingStateMachine):
def getOutput(self, state, inp):

return state % 5

Instances of CountMod5 generate output sequences of the form 0, 1, 2, 3, 4, 0, 1, 2, 3,
4, 0,

Part a. Define the CountingStateMachine class. Since CountingStateMachine is a subclass
of sm.SM, you will have to provide definitions of the startState instance variable and get-
NextValues method, just as we have done for other state machines. You can assume that every
subclass of CountingStateMachine will provide an appropriate getOutput method.

class CountingStateMachine(sm.SM):

def __init__(self):

self.startState = 0

def getNextState(self, state, inp):

return(state + 1, self.getOutput(state, inp))

Part b. Define a subclass of CountingStateMachine called AlternateZeros. Instances of
AlternateZeros should be state machines for which, on even steps, the output is the same as
the input, and on odd steps, the output is 0. That is, given inputs, i0, i1, i2, i3, . . ., they generate
outputs, i0, 0, i2, 0,

class AlternateZeros(CountingStateMachine):
def getOutput(self, state, inp):

if not state % 2:
return inp

return 0

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

