Problem Wk.8.1.2: Modeling Resistors

Read the Software Lab 8 Handout before doing these problems.

Part 1: Resistor constraint

If you have an r ohm resistor connected between nodes n1 and n2, and a current i flowing through it (from the $n 1$ to the $n 2$ node), what constraint does that component exert on variables n1 (denoting the voltage at node n1), n2 (denoting the voltage at node n 2), and i (denoting the current through the resistor)?

Choose the coefficient for each term. Pick the first non-zero coefficient to be positive; this is an arbitrary choice, but it makes checking easier.

```
1. ?
        0
        1
        -1
        r
        -r
    * n1 + ? * n2 + ? * i = ?
```


Part 2: le.Equation

Express the resistor constraint as an instance of the le.equation class. Assume:

- The resistor value is 1000
- The names of the nodes are the strings: 'n1', 'n2'
- The name of the current is the string: ' i '

Fill in the following Python expression:

```
e = le.Equation()
```


Part 3: getEquation

Complete the definition of the Resistor class (using the component superclass), by finishing the definition of getEquation:

```
class Resistor(Component):
    def __init__(self, r, n1, n2):
        self.current = util.gensym('i_'+n1+'->'+n2) # a string
        self.n1 = n1 # a string
        self.n2 = n2 # a string
        self.r = r # a number
    def getEquation(self):
        # your code here
```

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

