
Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 7 

Chapter 1 
Course Overview


1.1 Goals for 6.01 
We have many goals for this course. Our primary goal is for you to learn to appreciate and use 
the fundamental design principles of modularity and abstraction in a variety of contexts from 
electrical engineering and computer science. To achieve this goal, we will study electrical engi
neering (EE) and computer science (CS) largely from the perspective of how to build systems that 
interact with, and attempt to control, an external environment. Such systems include everything 
from low-level controllers like heat regulators or cardiac pacemakers, to medium-level systems 
like automated navigation or virtual surgery, to high-level systems that provide more natural 
human-computer interfaces. 

Our second goal is to show you that making mathematical models of real systems can help in the 
design and analysis of those systems; and to give you practice with the difficult step of deciding 
which aspects of the real world are important to the problem being solved and how to model 
them in ways that give insight into the problem. 

We also hope to engage you more actively in the educational process. Most of the work of this 
course will not be like typical problems from the end of a chapter. You will work individually 
and in pairs to solve problems that are deeper and more open-ended. There will not be a unique 
right answer. Argument, explanation, and justification of approach will be more important than 
the answer. We hope to expose you to the ubiquity of trade-offs in engineering design: it is rare 
that an approach will be best in every dimension; some will excel in one way, others in a different 
way. Deciding how to make such trade-offs is a crucial part of engineering. 

Another way in which we hope to engage you in the material is by having many of you return 
to the course as lab assistants in future semesters. Having a large number of lab assistants in the 
class means that students can be given more open-ended problems, and have people around to 
help them when they are stuck. Even more importantly, the lab assistants are meant to question 
the students as they go; to challenge their understanding and help them see and evaluate a variety 
of approaches. This process is of great intellectual value to student and lab assistant alike. 

Finally, of course, we have the more typical goals of teaching exciting and important basic ma
terial from electrical engineering and computer science, including modern software engineering, 
linear systems analysis, electronic circuits, and decision-making. This material all has an internal 
elegance and beauty, as well as crucial role in building modern EE and CS systems. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 8 

1.2 Modularity, abstraction, and modeling 
Whether proving a theorem by building up from lemmas to basic theorems to more specialized 
results, or designing a circuit by building up from components to modules to complex processors, 
or designing a software system by building up from generic procedures to classes to class libraries, 
humans deal with complexity by exploiting the power of abstraction and modularity. Without 
such tools, a single person would be overwhelmed by the complexity of a system, as there is only 
so much detail that a single person can consciously manage at a time. 

Modularity is the idea of building components that can be re-used; and abstraction is the idea 
that after constructing a module (be it software or circuits or gears), most of the details of the 
module construction can be ignored and a simpler description used for module interaction (the 
module computes the square root, or doubles the voltage, or changes the direction of motion). 

Given basic modules, one can move up a level of abstraction and construct a new module by 
putting together several previously-built modules, thinking only of their abstract descriptions, 
and not their implementations. And, of course, this process can be repeated over many stages. 
This process gives one the ability to construct systems with complexity far beyond what would 
be possible if it were necessary to understand each component in detail. 

Any module can be described in a large number of ways. We might describe the circuitry in a 
digital watch in terms of how it behaves as a clock and a stopwatch, or in terms of voltages and 
currents within the circuit, or in terms of the heat produced at different parts of the circuitry. Each 
of these is a different model of the watch. Different models will be appropriate for different tasks: 
there is no single correct model. Rather, each model exposes different dimensions of the system, 
allowing us to explore many aspects of the design space of a system, and to trade off different 
factors in the performance of a system. 

The primary theme of this course will be to learn about different methods for building modules 
out of primitives, and of building different abstract models of them, so that we can analyze or 
predict their behavior, and so we can recombine them into even more complex systems. The same 
fundamental principles will apply to software, to control systems, and to circuits. 

1.2.1 Example problem 
Imagine that you need to make a robot that will roll up close to a light bulb and stop a fixed 
distance from it. The first question is, how can we get electrical signals to relate to the physical 
phenomena of light readings and robot wheel rotations? There is a large part of electrical engi
neering related to the design of physical devices that connect to the physical world in such a way 
that some electrical property of the device relates to a physical process in the world. For example, 
a light-sensitive resistor (photo-resistor) is a sensor whose resistance changes depending on light 
intensity impinging on it; a motor is an effector whose rotor speed is related to the voltage across 
its two terminals. In this course, we will not examine the detailed physics of sensors and effectors, 
but will concentrate on ways of designing systems that use sensors and effectors to perform both 
simple and more complicated tasks. To get a robot to stop in front of a light bulb, the problem will 
be to find a way to connect the photo-resistor to the motor, so that the robot will stop at an appro
priate distance from the bulb. Thus, we will already use the idea of abstraction to treat sensors 



Chapter 1 Course Overview	 6.01— Spring 2011— April 25, 2011 9 

and effectors as primitive modules whose internal details we can ignore, and whose performance 
characteristics we can use as we design systems built on these elements. 

1.2.2 An abstraction hierarchy of mechanisms 
Given the light-sensitive resistor and the motor, we could find many ways of connecting them, 
using bits of metal and ceramic of different kinds, or making some kind of magnetic or mechanical 
linkages. The space of possible designs of machines is enormous. 

One of the most important things that engineers do, when faced with a set of design problems, 
is to standardize on a basis set of components to use to build their systems. There are many 
reasons for standardizing on a basis set of components, mostly having to do with efficiency of 
understanding and of manufacturing. It is important, as a designer, to develop a repertoire of 
standard bits and pieces of designs that you understand well and can put together in various ways 
to make more complex systems. If you use the same basis set of components as other designers, 
you can learn valuable techniques from them, rather than having to re-invent the techniques 
yourself. And other people will be able to readily understand and modify your designs. 

We can often make a design job easier by limiting the space of possible designs, and by standard
izing on: 

•	 a basis set of primitive components; 

•	 ways of combining the primitive components to make more complex systems; 

•	 ways of “packaging” or abstracting pieces of a design so they can be reused (in essence creat
ing new “primitives”); and 

•	 ways of capturing common patterns of abstraction (essentially, abstracting our abstractions). 

Very complicated design problems can become tractable using such a primitive-combination
abstraction-pattern (PCAP) approach. In this class, we will examine and learn to use a variety 
of PCAP strategies common in EE and CS, and will even design some of our own, for special pur
poses. In the rest of this section, we will hint at some of the PCAP systems we will be developing 
in much greater depth throughout the class. Figure 1.1 shows one view of this development, as a 
successive set of restrictions of the design space of mechanisms. 

One very important thing about abstract models is that once we have fixed the abstraction, it 
will usually be possible to implement it using a variety of different underlying substrates. So, 
as shown in figure 1.2, we can construct general-purpose computers out of a variety of different 
kinds of systems, including digital circuits and general-purpose computers. And systems satisfy
ing the digital circuit abstraction can be constructed from analog circuits, but also from gears or 
water or light. 

Another demonstration of the value of abstracted models is that we can use them, by analogy, to 
describe quite different systems. So, for example, the constraint models of circuits that we will 
study can be applied to describing transmission of neural signals down the spinal cord, or of heat 
through a network of connected bodies. 

Let’s explore the abstraction hierarchy figure 1.1 in some more detail, moving up abstraction lev
els while observing common patterns. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 10 

electrical systems

traditional analog circuits

digital electronic circuits

electronic computers

electronic computers 
running Python programs

electronic computers with 
Python programs that 

select outputs by 
planning

Figure 1.1 Increasingly constrained systems.


General-purpose computer

Digital circuits Turing 
machine

Cellular 
automata

Analog 
electronics Gears Light Water

Figure 1.2 A single abstraction may have a variety of different underlying implementations. 

Circuits 
Typical electronics circuits are built out of a basis set of primitive components such as voltage 
sources, resistors, capacitors, inductors and transistors. This set of component types was chosen 
to be closely related to primitive concepts in our physical understanding of electronic systems 
in terms of voltage, current, resistance, and the rate of change of those quantities over time. So, 
when we buy a physical resistor, we tend to think only of its resistance; and when we buy a 
capacitor, we think of its ability to store charge. But, of course, that physical resistor has some 
capacitance, and the capacitor, some resistance. Still, it helps us in our designs to have devices 
that are as close to the ideal models as possible; and it helps that people have been designing with 
these components for years, so that we can adopt the strategies that generations of clever people 
have developed. 

The method of combining circuit elements is to connect their terminals with conductors (wires, 
crimps, solder, etc.), a process that is generically referred to as wiring. And our method of ab
straction is to describe the constraints that a circuit element exerts on the currents and voltages of 
terminals to which the element is connected. 

So, armed with the standard basis set of analog circuit components, we can try to build a circuit to 
control our robot. We have a resistance that varies with the light level, but we need a voltage that 
does so, as well. We can achieve this by using a voltage divider, which is shown in figure 1.3A. 
Using an abstract, constraint-based model of the behavior of circuit components that we will 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 11 

study in detail later in the course, we can determine the following relationship between Vout and 
Vin: 

RB
Vout = Vin . 

RA + RB 

So, for example, if RA = RB, then Vout = Vin/2. Or, in our case, if RA actually varies with the 
amount of light shining on it, then Vout will also vary with the light.1 

RA

RB

Vin

Vout

RA

RB

Vin

Vout

motor

RA

RB

Vin

Vout

motor

Figure 1.3 Voltage dividers: A. Resistor divider. B. Connected to a motor, in a way that breaks 
the abstraction from part A. C. Connected to a motor, with a buffer. 

That is great. So, now, we might imagine that we could use this voltage difference that we have 
created to drive the motor at different speeds, depending on the light hitting the resistor, using a 
circuit something like the one shown in figure 1.3B. But, sadly, that will not work. It turns out that 
once we connect the motor to the circuit, it actually changes the voltages, and we can no longer 
maintain the voltage difference needed to drive the motor. 

So, although we have developed an abstract model of the behavior of circuit components, which 
lets us analyze the behavior of a particular complete circuit design, it does not give us modu
larity. That is, we cannot design two parts of a circuit, understand each of their behaviors, and 
then predict the behavior of the composite system based on the behavior of the separate compo
nents. Instead, we would have to re-analyze the joint behavior of the whole composite system. 
Lack of modularity makes it very difficult to design large systems, because two different people, 
or the same person at two different times, cannot design pieces and put them together without 
understanding the whole. 

To solve this problem, we can augment our analog-circuit toolbox with some additional compo
nents that allow us to design components with modular behavior; they “buffer” or “isolate” one 
part of the circuit from another in ways that allow us to combine the parts more easily. In this 
class, we will use op-amps to build buffers, which will let us solve our sample problem using a 
slightly more complex circuit, as shown in figure 1.3C. 

Thus, the key point is that good modules preserve abstraction barriers between the use of a mod
ule and internal details of how they are constructed. We will see this theme recur as we discuss 
different PCAP systems. 

1 Do not worry if this example does not make much sense to you; we will explore this all in great detail later. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 12 

Digital circuits 
In analog circuits, we think about voltages on terminals ranging over real values. This gives us 
the freedom to create an enormous variety of circuits, but sometimes that freedom actually makes 
the design process more difficult. To design ever more complex circuits, we can move to a much 
stronger, digital abstraction, in which the voltages on the terminals are thought of as only taking 
on values that are either “low” or “high” (often called 0 and 1). This PCAP system is made up of 
a basis set of elements, called gates, that are built out of simpler analog circuit components, such 
as transistors and resistors. Adopting the digital abstraction is a huge limitation on the kinds 
of circuits that can be built. However, digital circuits can be easy to design and build and also 
can be inexpensive because the basic elements (gates) are simple (fewer transisters are need to 
construct a gate than to construct an op amp), versatile (only a small number of different kinds 
of logic elements are necessary to construct an arbitrary digital circuit), and combinations are 
easy to think about (using Boolean logic). These properties allow designers to build incredibly 
complex machines by designing small parts and putting them together into increasingly larger 
pieces. Digital watches, calculators, and computers are all built this way. 

Digital design is a very important part of EECS, and it is treated in a number of our courses at basic 
and advanced levels, but is not one of the topics we will go into in detail in 6.01. Nevertheless, 
the same central points that we explore in this course apply to this domain as well. 

Computers 
One of the most important developments in the design of digital circuits is that of the general-
purpose “stored program” computer. Computers are a particular class of digital circuits that are 
general purpose: the same actual circuit can perform (almost) any transformation between its 
inputs and its outputs. Which particular transformation it performs is governed by a program, 
which is some settings of physical switches, or information written on an external physical mem
ory, such as cards or a tape, or information stored in some sort of internal memory. 

The “almost” in the previous section refers to the actual memory capacity of the computer. Exactly 
what computations a computer can perform depends on the amount of memory it has; and also 
on the time you are willing to wait. So, although a general-purpose computer can do anything 
a special-purpose digital circuit can do, in the information-processing sense, the computer might 
be slower or use more power. However, using general-purpose computers can save an enormous 
amount of engineering time and effort. It is much cheaper and easier to debug and modify and 
manufacture software than hardware. The modularities and abstractions that software PCAP 
systems give us are even more powerful than those derived from the digital circuit abstraction. 

Again, we can see how abstraction separates use from details; we don’t need to know how the 
circuits inside a computer are designed, we just need to know the rules by which we can use them 
and the constraints under which they perform. 

Python programs 
Every general-purpose computer has a different detailed design, which means that the way its 
program needs to be specified is different. Furthermore, the “machine languages” for describing 
computer programs, at the most primitive level, are awkward for human programmers. So, we 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 13 

have developed a number of computer programming languages for specifying a desired com
putation. These languages are converted into instructions in the computer’s native machine lan
guage by other computer programs, called compilers or interpreters. One of the coolest and most 
powerful things about general-purpose computers is this ability to write computer programs that 
process or create or modify other computer programs. 

Computer programming languages are PCAP systems. They provide primitive operations, ways 
of combining them, ways of abstracting over them, and ways of capturing common abstraction 
patterns. We will spend a considerable amount of time in this course studying the particular 
primitives, combination mechanisms, and abstraction mechanisms made available in the Python 
programming language. But the choice of Python is relatively unimportant. Virtually all modern 
programming languages supply a similar set of mechanisms, and the choice of programming 
language is primarily a matter of taste and convenience. 

In a computer program we have both data primitives and computation primitives. At the most 
basic level, computers generally store binary digits (bits) in groups of 32 or 64, called words. 
These words are data primitives, and they can be interpreted by our programs as representing 
integers, floating-point numbers, strings, or addresses of other data in the computer’s memory. 
The computational primitives supported by most computers include numerical operations such 
as addition and multiplication, and locating and extracting the contents of a memory at a given 
address. In Python, we will work at a level of abstraction that does not require us to think very 
much about addresses of data, but it is useful to understand that level of description, as well. 

Primitive data and computation elements can be combined and abstracted in a variety of differ
ent ways, depending on choices of programming style. We will explore these in more detail in 
section 1.3.2. 

1.2.3 Models 
So far, we have discussed a number of ways of framing the problem of designing and construct
ing mechanisms. Each PCAP system is accompanied by a modeling system that lets us make 
mathematical models of the systems we construct. 

What is a model? It is a new system that is considerably simpler than the system being modeled, 
but which captures the important aspects of the original system. We might make a physical model 
of an airplane to test in a wind tunnel. It does not have to have passenger seats or landing lights; 
but it has to have surfaces of the correct shape, in order to capture the important properties for 
this purpose. Mathematical models can capture properties of systems that are important to us, 
and allow us to discover things about the system much more conveniently than by manipulating 
the original system itself. 

One of the hardest things about building models is deciding which aspects of the original system 
to model and which ones to ignore. Many classic, dramatic engineering failures can be ascribed to 
failing to model important aspects of the system. One example (which turned out to be an ethical 
success story, rather than a failure) is LeMessurier’s Citicorp Building2, in which an engineering 
design change was made, but tested in a model in which the wind came only from a limited set 
of directions. 

2 See “The Fifty-Nine Story Crisis”, The New Yorker, May 29, 1995, pp 45-53. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 14 

Another important dimension in modeling is whether the model is deterministic or not. We 
might, for example, model the effect of the robot executing a command to set its velocity as mak
ing an instantaneous change to the commanded velocity. But, of course, there is likely to be some 
delay and some error. We have to decide whether to ignore that delay and error in our model and 
treat it as if it were ideal; or, for example, to make a probabilistic model of the possible results 
of that command. Generally speaking, the more different the possible outcomes of a particular 
action or command, and the more diffuse the probability distribution over those outcomes, the 
more important it is to explicitly include uncertainty in the model. 

Once we have a model, we can use it in a variety of different ways, which we explore below. 

Analytical models 
By far the most prevalent use of models is in analysis: Given a circuit design, what will the voltage 
on this terminal be? Given a computer program, will it compute the desired answer? How long 
will it take? Given a control system, implemented as a circuit or as a program, will the system 
stop at the right distance from the light bulb? 

Analytical tools are important. It can be hard to verify the correctness of a system by trying 
it in all possible initial conditions with all possible inputs; sometimes it is easier to develop a 
mathematical model and then prove a theorem about the model. 

For some systems, such as pure software computations, or the addition circuitry in a calculator, 
it is possible to analyze correctness or speed with just a model of the system in question. For 
other systems, such as fuel injectors, it is impossible to analyze the correctness of the controller 
without also modeling the environment (or “plant”) to which it is connected, and then analyzing 
the behavior of the coupled system of the controller and environment. 

To demonstrate some of these tradeoffs, we can do a very simple analysis of a robot moving to
ward a lamp. Imagine that we arrange it so that the robot’s velocity at time t, V[t], is proportional 
to the difference between the actual light level, X[t], and a desired light level (that is, the light 
level we expect to encounter when the robot is the desired distance from the lamp), Xdesired ; that 
is, we can model our control system with the difference equation 

V[t] = k(Xdesired − X[t]) 

where k is the constant of proportionality, or gain, of the controller. 

Now, we need to model the world. For simplicity, we equate the light level to the robot’s position 
(assuming that the units match); in addition we assume the robot’s position at time t is its position 
at time t − 1 plus its velocity at time t − 1 (actually, this should be the product of the velocity and 
the length of time between samples, but we can just assume a unit time step and thus use velocity). 
When we couple these models, we get the difference equation 

X[t] = X[t − 1] + k(Xdesired − X[t − 1]) . 

Now, for a given value of k, we can determine how the system will behave over time, by solving 
the difference equation in X. 

Later in the course, we will see how easily-determined mathematical properties of a difference-
equation model can tell us whether a control system will have the desired behavior and whether 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 15 

or not the controller will cause the system to oscillate. These same kinds of analyses can be applied 
to robot control systems as well as to the temporal properties of voltages in a circuit, and even to 
problems as unrelated as the consequences of a monetary policy decision in economics. It is 
important to note that treating the system as moving in discrete time steps is an approximation 
to underlying continuous dynamics; it can make models that are easier to analyze, but it requires 
sophisticated understanding of sampling to understand the effects of this approximation on the 
correctness of the results. 

Synthetic models 
One goal of many people in a variety of sub-disciplines of computer science and electrical en
gineering is automatic synthesis of systems from formal descriptions of their desired behavior. 
For example, you might describe some properties you would want the input/output behavior of 
a circuit or computer program to have, and then have a computer system discover a circuit or 
program with the desired property. 

This is a well-specified problem, but generally the search space of possible circuits or programs 
is much too large for an automated process; the intuition and previous experience of an expert 
human designer cannot yet be matched by computational search methods. 

However, humans use informal models of systems for synthesis. The documentation of a software 
library, which describes the function of the various procedures, serves as an informal model that 
a programmer can use to assemble those components to build new, complex systems. 

Internal models 
As we wish to build more and more complex systems with software programs as controllers, we 
find that it is often useful to build additional layers of abstraction on top of the one provided by 
a generic programming language. This is particularly true when the nature of the exact computa
tion required depends considerably on information that is only received during the execution of 
the system. 

Consider, for example, an automated taxi robot (or, more prosaically, the navigation system in 
your new car). It takes, as input, a current location in the city and a goal location, and gives, as 
output, a path from the current location to the goal. It has a map built into it. 

It is theoretically possible to build an enormous digital circuit or computer program that contains 
a look-up table, in which we precompute the path for all pairs of locations and store them away. 
Then when we want to find a path, we could simply look in the table at the location correspond
ing to the start and goal location and retrieve the precomputed path. Unfortunately, the size of 
that table is too huge to contemplate. Instead, what we do is construct an abstraction of the prob
lem as one of finding a path from any start state to any goal state, through a graph (an abstract 
mathematical construct of “nodes” with “arcs” connecting them). We can develop and implement 
a general-purpose algorithm that will solve any shortest-path problem in a graph. That algorithm 
and implementation will be useful for a wide variety of possible problems. And for the naviga
tion system, all we have to do is represent the map as a graph, specify the start and goal states, 
and call the general graph-search algorithm. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 16 

We can think of this process as actually putting a model of the system’s interactions with the 
world inside the controller; it can consider different courses of action in the world and pick the 
one that is the best according to some criterion. 

Another example of using internal models is when the system has some significant lack of infor
mation about the state of the environment. In such situations, it may be appropriate to explicitly 
model the set of possible states of the external world and their associated probabilities, and to 
update this model over time as new evidence is gathered. We will pursue an example of this 
approach near the end of the course. 

1.3 Programming embedded systems 
There are many different ways of thinking about modularity and abstraction for software. Differ
ent models will make some things easier to say and do and others more difficult, making different 
models appropriate for different tasks. In the following sections, we explore different strate
gies for building software systems that interact with an external environment, and then different 
strategies for specifying the purely computational part of a system. 

1.3.1 Interacting with the environment 
Increasingly, computer systems need to interact with the world around them, receiving informa
tion about the external world, and taking actions to affect the world. Furthermore, the world is 
dynamic, so that as the system is computing, the world is changing, requiring future computation 
to adapt to the new state of the world. 

There are a variety of different ways to organize computations that interact with an external 
world. Generally speaking, such a computation needs to: 

1. get information from sensors (light sensors, sonars, mouse, keyboard, etc.), 
2. perform computation, remembering some of the results, and 
3. take actions to change the outside world (move the robot, print, draw, etc.). 

These operations can be put together in different styles. 

1.3.1.1 Sequential 
The most immediately straightforward style for constructing a program that interacts with the 
world is the basic imperative style, in which the program gives a sequence of ’commands’ to the 
system it is controlling. A library of special procedures is defined, some of which read information 
from the sensors and others of which cause actions to be performed. Example procedures might 
move a robot forward a fixed distance, or send a file out over the network, or move video-game 
characters on the screen. 

In this model, we could naturally write a program that moves an idealized robot in a square, if 
there is space in front of it. 

if noObstacleInFront:

moveDistance(1)

turnAngle(90)

moveDistance(1)




Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 17 

turnAngle(90)

moveDistance(1)

turnAngle(90)

moveDistance(1)

turnAngle(90)


The major problem with this style of programming is that the programmer has to remember to 
check the sensors sufficiently frequently. For instance, if the robot checks for free space in front, 
and then starts moving, it might turn out that a subsequent sensor reading will show that there 
is something in front of the robot, either because someone walked in front of it or because the 
previous reading was erroneous. It is hard to have the discipline, as a programmer, to remember 
to keep checking the sensor conditions frequently enough, and the resulting programs can be 
quite difficult to read and understand. 

For the robot moving toward the light, we might write a program like this: 

while lightValue < desiredValue:

moveDistance(0.1)


This would have the robot creep up, step by step, toward the light. We might want to modify it so 
that the robot moved a distance that was related to the difference between the current and desired 
light values. However, if it takes larger steps, then during the time that it is moving it will not be 
sensitive to possible changes in the light value and cannot react immediately to them. 

1.3.1.2 Event-Driven 
User-interface programs are often best organized differently, as event-driven (also called interrupt 
driven) programs. In this case, the program is specified as a collection of procedures (called ’han
dlers’ or ’callbacks’) that are attached to particular events that can take place. So, for example, 
there might be procedures that are called when the mouse is clicked on each button in the inter
face, when the user types into a text field, or when the temperature of a reactor gets too high. 
An “event loop” runs continuously, checking to see whether any of the triggering events have 
happened, and, if they have, calling the associated procedure. 

In our simple example, we might imagine writing a program that told the robot to drive forward 
by default; and then install an event handler that says that if the light level reaches the desired 
value, it should stop. This program would be reactive to sudden changes in the environment. 

As the number and frequency of the conditions that need responses increases, it can be difficult 
to both keep a program like this running well and guarantee a minimum response time to any 
event. 

1.3.1.3 Transducer 
An alternative view is that programming a system that interacts with an external world is like 
building a transducer with internal state. Think of a transducer as a processing box that runs 
continuously. At regular intervals (perhaps many times per second), the transducer reads all of 
the sensors, does a small amount of computation, stores some values it will need for the next 
computation, and then generates output values for the actions. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 18 

This computation happens over and over and over again. Complex behavior can arise out of 
the temporal pattern of inputs and outputs. So, for example, a robot might try to move forward 
without hitting something by defining a procedure: 

def step():

distToFront = min(frontSonarReadings)

motorOutput(gain * (distToFront - desiredDistance), 0.0)


Executed repeatedly, this program will automatically modulate the robot’s speed to be propor
tional to the free space in front of it. 

The main problem with the transducer approach is that it can be difficult to do tasks that are 
fundamentally sequential (like the example of driving in a square, shown above). We will start 
with the transducer model, and then, as described in section 4.3, we will build a new abstraction 
layer on top of it that will make it easy to do sequential commands, as well. 

1.3.2 Programming models 
Just as there are different strategies for organizing entire software systems, there are different 
strategies for formally expressing computational processes within those structures. 

1.3.2.1 Imperative computation 
Most of you have probably been exposed to an imperative model of computer programming, 
in which we think of programs as giving a sequential set of instructions to the computer to do 
something. And, in fact, that is how the internals of the processors of computers are typically 
structured. So, in Java or C or C++, you write typically procedures that consist of lists of instruc
tions to the computer: 

1. Put this value in this variable 

2. Square the variable 

3. Divide it by pi 

4. If the result is greater than 1, return the result 

In this model of computation, the primitive computational elements are basic arithmetic opera
tions and assignment statements. We can combine the elements using sequences of statements, 
and control structures such as if, for, and while. We can abstract away from the details of a 
computation by defining a procedure that does it. Now, the engineer only needs to know the 
specifications of the procedure, but not the implementation details, in order to use it. 

1.3.2.2 Functional computation 
Another style of programming is the functional style. In this model, we gain power through 
function calls. Rather than telling the computer to do things, we ask it questions: What is 4 + 5? 
What is the square root of 6? What is the largest element of the list? 

These questions can all be expressed as asking for the value of a function applied to some argu
ments. But where do the functions come from? The answer is, from other functions. We start with 
some set of basic functions (like “plus”), and use them to construct more complex functions. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 19 

This method would not be powerful without the mechanisms of conditional evaluation and re
cursion. Conditional functions ask one question under some conditions and another question 
under other conditions. Recursion is a mechanism that lets the definition of a function refer to the 
function being defined. Recursion is as powerful as iteration. 

In this model of computation, the primitive computational elements are typically basic arithmetic 
and list operations. We combine elements using function composition (using the output of one 
function as the input to another), if, and recursion. We use function definition as a method 
of abstraction, and the idea of higher-order functions (passing functions as arguments to other 
functions) as a way of capturing common high-level patterns. 

1.3.2.3 Data structures 
In either style of asking the computer to do work for us, we have another kind of modularity and 
abstraction, which is centered around the organization of data. 

At the most primitive level, computers operate on collections of (usually 32 or 64) bits. We can 
interpret such a collection of bits as representing different things: a positive integer, a signed 
integer, a floating-point number, a Boolean value (true or false), one or more characters, or an 
address of some other data in the memory of the computer. Python gives us the ability to work 
directly with all of these primitives, except for addresses. 

There is only so much you can do with a single number, though. We would like to build computer 
programs that operate on representations of documents or maps or circuits or social networks. To 
do so, we need to aggregate primitive data elements into more complex data structures. These can 
include lists, arrays, dictionaries, and other structures of our own devising. 

Here, again, we gain the power of abstraction. We can write programs that do operations on 
a data structure representing a social network, for example, without having to worry about the 
details of how the social network is represented in terms of bits in the machine. 

1.3.2.4 Object-oriented programming: computation + data structures 
Object-oriented programming is a style that applies the ideas of modularity and abstraction to 
execution and data at the same time. 

An object is a data structure, together with a set of procedures that operate on the data. Basic 
procedures can be written in an imperative or a functional style, but ultimately there is imperative 
assignment to state variables in the object. 

One major new type of abstraction in OO programming is “generic” programming. It might be 
that all objects have a procedure called print associated with them. So, we can ask any object to 
print itself, without having to know how it is implemented. Or, in a graphics system, we might 
have a variety of different objects that know their x, y positions on the screen. So each of them can 
be asked, in the same way, to say what their position is, even though they might be represented 
very differently inside the objects. 

In addition, most object-oriented systems support inheritance, which is a way to make new kinds 
of objects by saying that they are mostly like another kind of object, but with some exceptions. 
This is another way to take advantage of abstraction. 



Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 20 

Programming languages 
Python as well as other modern programming languages, such as Java, Ruby and C++, support 
all of these programming models. The programmer needs to choose which programming model 
best suits the task. This is an issue that we will return to throughout the course. 

1.4 Summary 
We hope that this course will give you a rich set of conceptual tools and practical techniques, as 
well as an appreciation of how math, modeling, and implementation can work together to enable 
the design and analysis of complex computational systems that interact with the world. 

Acknowledgments 
Thanks to Jacob White, Hal Abelson, Tomas Lozano-Perez, Sarah Finney, Sari Canelake, Eric 
Grimson, Ike Chuang, and Berthold Horn for useful comments and criticisms, and to Denny 
Freeman for significant parts and most of the figures in the linear systems chapter. - LPK 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

