
Problem Wk.13.3.5: Obstacles [Optional]


Consider the following function for searching maps. 

def mapTest(map, start, goal, searchFn = search.breadthFirstDP):
actions = range(max([len(map[s]) for s in map]))

 def succFn(s, a):

if a < len(map[s]):


return map[s][a]

else:


 return s


 def goalFn(s):

return s == goal


 return searchFn(start, goalFn, actions, succFn) 

We want to generalize map searching to allow us to specify that some actions and/or 
states are forbidden. For example, we could say that the road (arc) from 'A' to 'C' is not 
available and we could also say that state 'D' is forbidden. Attempting to perform a 
forbidden action or enter a forbidden states just leaves you in the current state. We will 
call the new function mapObstTest and it will have two new arguments: 

badStates: a list of state names that should never be visited. 
badArcs: a list of state name pairs, e.g. ('A', 'B'), describing state transitions that 
should never be attempted. This is directional, that is, it forbids going from 'A' and 
'B' but not the other way. 

Define mapObstTest below. It's a lot like mapTest; you should only need to modify the 
successor function. You can assume that your definition is being written in the search.py
file, so you have access to all the definitions there. 

If you do not know about the Python in operator, which checks whether an element is 
in a list, then read about it in the Python documentation. 

You can debug using tutor13Work.py. 

http://docs.python.org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange




MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

