6.01: Introduction to EECS I

Optimizing a Search

May 3, 2011

Nano-Quiz Makeups

Wednesday, May 4, 6-11pm, 34-501.

- everyone can makeup/retake NQ 1
- everyone can makeup/retake two additional NQs
- you can makeup/retake other NQs excused by S^3

If you makeup/retake a NQ, the new score will replace the old score, even if the new score is lower!

Last Time

We developed systematic ways to automate a search.
Example: Find minimum distance path between 2 points on a rectangular grid.

Search Example

Find minimum distance path between 2 points on a rectangular grid.

Represent all possible paths with a tree (shown to just length 3).

Find the shortest path from A to I.

Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B A \quad A B C \quad A B E A D$
3: $\quad A B A B A B A D A B C$ ABE AD

Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B A \quad A B C \quad A B E A D$
3: $\quad A B A B A B A D A B C$ ABE AD

Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: $\quad A B A D$
2: $\quad A B A \quad A B C \quad A B E A D$
3: $\quad A B A B A B A D A B C$ ABE AD

Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B A \quad A B C \quad A B E A D$
3: $\quad A B A B A B A D A B C$ ABE AD

Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B A \quad A B C \quad A B E A D$
3: $\quad A B A B A B A D A B C$ ABE AD

Order Matters

Replace first node in agenda by its children:

step Agenda
0 : A
1: $\quad A B A D$
2: $\quad A B A \quad A B C$ ABE AD
3: $\quad A B A B$ ABAD ABC ABE AD
Depth First Search

Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $A B$ ADA ADE ADG
3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B$ ADA ADE ADG
3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B$ ADA ADE ADG
3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:


```
step Agenda
0: A
1: AB AD
2: AB ADA ADE ADG
3: AB ADA ADE ADGD ADGH
```


Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: AB ADA ADE ADG
3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A B$ ADA ADE ADG
3: AB ADA ADE ADGD ADGH
also Depth First Search

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A D$ ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A D$ ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: $\quad A B A D$
2: $\quad A D$ ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad \mathrm{AD} A B A \quad A B C \quad A B E$
3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: $\quad \mathrm{AB} A D$
2: $\quad A D$ ABA ABC ABE
3: $\quad A B A$ ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
1: $\quad \mathrm{AB}$ AD
2: $\quad \mathrm{AD}$ ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG
4: \quad ABC ABE ADA ADE ADG ABAB ABAD

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
2: AD ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG
4: $\quad \mathrm{ABC}$ ABE ADA ADE ADG ABAB ABAD
5: \quad ABE ADA ADE ADG ABAB ABAD ABCB ABCF

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
3: ABA ABC ABE ADA ADE ADG
4: $\quad \mathrm{ABC}$ ABE ADA ADE ADG ABAB ABAD
5: ABE ADA ADE ADG ABAB ABAD ABCB ABCF
6: ADA ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
5: ABE ADA ADE ADG ABAB ABAD ABCB ABCF
6: ADA ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH
7: ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
7: ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD
8: ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
8: ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH
9: ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH ADGD ADGH

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
8: ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH
9: ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH ADGD ADGH

Breadth First Search

Order Matters

Replace last node by its children (depth-first search):

- implement with stack (last-in, first-out).

Remove first node from agenda. Add its children to the end of the agenda (breadth-first search):

- implement with queue (first-in, first-out).

Today

Generalize search framework \rightarrow uniform cost search.
Improve search efficiency \rightarrow heuristics.

Action Costs

Some actions can be more costly than others.
Compare navigating from A to I on two grids.

Modify search algorithms to account for action costs
\rightarrow Uniform Cost Search

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited A
Agenda: A

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited A B D
Agenda: $\mathcal{A} A B A D$

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCE
Agenda: $\mathcal{A} A B A D A B C$ ABE

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCEG
Agenda: $\mathcal{A} A B A D$ ABC ABE ADG

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCEGF
Agenda: $\triangle A B A B A B C$ ABE ADG ABCF

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCEGFH
Agenda: $\mathcal{A} A B A D A B C$ ABE ADG ABCF ABEH

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCEGFH
Agenda: $A \triangle A B A B X B C A B E$ ABCF ABEH

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCEGFHI
Agenda: $\triangle A B$ AD $\triangle B C ~ \triangle B E ~ A D G ~ \triangle B C F ~ A B E H ~ A B C F I$

Breadth-First with Dynamic Programming

First consider actions with equal costs.

Visited ABDCEGFHI
Agenda: $\triangle \triangle B A B \triangle B C$ $\triangle B E \triangle B G \triangle B E F$ ABEH ABCFI

Breadth-First with Dynamic Programming

Notice that we expand nodes in order of increasing path length.

Visited ABDCEGFHI
$\begin{array}{rlllllllll}\text { Agenda: } & A B & A B & A D & \triangle B C & \triangle B E & \triangle B G & \triangle B C F & A B E H & A B C F I \\ 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4\end{array}$

Breadth-First with Dynamic Programming

This algorithm fails if path costs are not equal.

Visited ABDCEGFHI
$\begin{array}{rlllllllll}\text { Agenda: } & A B & A B & A D & \triangle B C & \triangle B E & \triangle B G & \triangle B C F & A B E H & A B C F I \\ 0 & 1 & 1 & 6 & 2 & 2 & 11 & 3 & 12\end{array}$

Nodes are not expanded in order of increasing path length.

Uniform Cost Search

Associate action costs with actions.
Enumerate paths in order of their total path cost.
Find the path with the smallest path cost $=$ sum of action costs along the path.
\rightarrow implement agenda with priority queue.

Priority Queue

Same basic operations as stacks and queues, with two differences:

- items are pushed with numeric score: the cost.
- popping returns the item with the smallest cost.

Priority Queue

Push with cost, pop smallest cost first.

```
>>> pq = PQ()
>>> pq.push('a', 3)
>>> pq.push('b', 6)
>>> pq.push('c', 1)
>>> pq.pop()
'c'
>>> pq.pop()
'a'
```


Priority Queue

Simple implementation using lists.

```
class PQ:
    def __init__(self):
        self.data = []
    def push(self, item, cost):
        self.data.append((cost, item))
    def pop(self):
        (index, cost) = util.argmaxIndex(self.data, lambda (c, x): -c)
        return self.data.pop(index)[1] # just return the data item
    def empty(self):
        return len(self.data) == 0
```

The pop operation in this implementation can take time proportional to the number of nodes (in the worst case).
[There are better algorithms!]

Search Node

class SearchNode:

```
def __init__(self, action, state, parent, actionCost):
        self.state = state
    self.action = action
    self.parent = parent
    if self.parent:
        self.cost = self.parent.cost + actionCost
    else:
        self.cost = actionCost
def path(self):
    if self.parent == None:
        return [(self.action, self.state)]
    else:
        return self.parent.path() + [(self.action, self.state)]
def inPath(self, s):
    if s == self.state:
        return True
    elif self.parent == None:
            return False
    else:
        return self.parent.inPath(s)
```


Uniform Cost Search

```
def ucSearch(initialState, goalTest, actions, successor):
    startNode = SearchNode(None, initialState, None, 0)
    if goalTest(initialState):
        return startNode.path()
    agenda = PQ()
    agenda.push(startNode, 0)
    while not agenda.empty():
        parent = agenda.pop()
        if goalTest(parent.state):
        return parent.path()
        for a in actions:
        (newS, cost)= successor(parent.state, a)
        if not parent.inPath(newS):
            newN = SearchNode(a, newS, parent, cost)
            agenda.push(newN, newN.cost)
    return None
```

goalTest was previously performed when children pushed on agenda.
Here, we must defer goalTest until all children are pushed (since a later child might have a smaller cost).
The goalTest is implemented during subsequent pop.

Dynamic Programming Principle

The shortest path from X to Z that goes through Y is made up of

- the shortest path from X to Y and
- the shortest path from Y to Z.

We only need to remember the shortest path from the start state to each other state!

Want to remember shortest path to Y. Therefore, defer remembering Y until all of its siblings are considered (similar to issue with goalTest) - i.e., remember expansions instead of visits.

ucSearch with Dynamic Programming

```
def ucSearch(initialState, goalTest, actions, successor):
    startNode = SearchNode(None, initialState, None, 0)
    if goalTest(initialState):
        return startNode.path()
    agenda = PQ()
    agenda.push(startNode, 0)
    expanded = {}
    while not agenda.empty():
            parent = agenda.pop()
            if not expanded.has_key(parent.state):
            expanded[parent.state] = True
        if goalTest(parent.state):
            return parent.path()
        for a in actions:
            (newS, cost) = successor(parent.state, a)
            if not expanded.has_key(newS):
                        newN = SearchNode(a, newS, parent, cost)
                        agenda.push(newN, newN.cost)
    return None
```


ucSearch with Dynamic Programming

Expanded:
Agenda: A
0

ucSearch with Dynamic Programming

Expanded: A
Agenda: $\mathcal{A} A B A D$
$\begin{array}{lll}0 & 1 & 1\end{array}$

ucSearch with Dynamic Programming

Expanded: A B
Agenda: $\mathcal{A} A B A D A B C A B E$

$$
\begin{array}{lllll}
0 & 1 & 1 & 6 & 2
\end{array}
$$

ucSearch with Dynamic Programming

Expanded: A B D
Agenda: A

$$
\begin{array}{lllllll}
0 & 1 & 1 & 6 & 2 & 2 & 2
\end{array}
$$

ucSearch with Dynamic Programming

Expanded: A B D E

ucSearch with Dynamic Programming

Expanded: A B D E
Agenda: $\mathcal{A} \triangle B A B A B C \quad \triangle B E \angle D E$ ADG ABEF ABEH

$$
\begin{array}{lllllllll}
0 & 1 & 1 & 6 & 2 & 2 & 2 & 3 & 3
\end{array}
$$

ucSearch with Dynamic Programming

Expanded: A B D E G
Agenda: $\triangle A B$ AD ABC $\triangle B E$ ADE ADG ABEF ABEH ADGH

$$
\begin{array}{llllllllll}
0 & 1 & 1 & 6 & 2 & 2 & 2 & 3 & 3 & 3
\end{array}
$$

ucSearch with Dynamic Programming

Expanded: A B D E G F
Agenda: $\triangle A B$ AD ABC $\triangle B E \angle D E$ ADG $\triangle B E F$ ABEH ADGH $\begin{array}{llllllllll}0 & 1 & 1 & 6 & 2 & 2 & 2 & 3 & 3 & 3\end{array}$

ABEFC ABEFI
8
4

ucSearch with Dynamic Programming

Expanded: A B D E G F H
Agenda: $\triangle A B$ AD ABC $\triangle B E$ ADE $\triangle D G ~ \triangle B E F ~ \triangle B E F ~ A D G H$ $\begin{array}{llllllllll}0 & 1 & 1 & 6 & 2 & 2 & 2 & 3 & 3 & 3\end{array}$

ABEFC ABEFI ABEHI
8
4
4

ucSearch with Dynamic Programming

Expanded: A B D E G F H

$\begin{array}{llllllllll}0 & 1 & 1 & 6 & 2 & 2 & 2 & 3 & 3 & 3\end{array}$
ABEFC ABEFI ABEHI
8
4
4

ucSearch with Dynamic Programming

Expanded: A B D E G F H

0	1	1	6	2	2	2	3	3	3

ABEFC ABEFD ABEHI

Conclusion

Searching spaces with unequal action costs is similar to searching spaces with equal action costs.

Just substitute priority queue for queue.

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point. We only notice the goal when we stumble upon it.

Is there a way to make the search process consider not just the starting point but also the goal?

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point. We only notice the goal when we stumble upon it.

Example: Start at E, go to I.

Expanded:
Agenda: E
0

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point. We only notice the goal when we stumble upon it.

Example: Start at E, go to I.

Expanded: E
Agenda: $\begin{array}{cccccc}\underline{L} & \text { EB } & \text { ED } & \text { EF } & \text { EH } \\ 0 & 1 & 1 & 1 & 1\end{array}$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B
Agenda: $\begin{array}{cccccccc}\mathbb{L} & \text { EB } & \text { ED } & \text { EF } & \text { EH } \\ 0 & 1 & 1 & 1 & 1 & 2 & 2\end{array}$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D
Agenda: $\begin{array}{cccccccccc}\mathbb{L} & E B & E D & \text { EF } & \text { EH } \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2\end{array}$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F
Agenda: $\begin{array}{cccccccccccc}\mathbb{E} & E B & E \subset & E F & \text { EH } & \text { EBA } & \text { EBC } & \text { EDA } \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H
Agenda: $\mathbb{L} E \bar{E} E \square E F$ EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A
Agenda: Z EB ED EF EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A C
Agenda: 区 EB ED EF EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A C
Agenda: 区 EB ED EF EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A C G
Agenda: 区 EB ED EF EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A C G
Agenda: \mathbb{Z} EB ED EY EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A C G
Agenda: Z EG EO EY EH EBA EBC EDA EDG EFC EFI EHG EHI

$$
\begin{array}{lllllllllllll}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Stumbling upon the Goal

Our searches so far have radiated outward from the starting point.
We only notice the goal when we stumble upon it.
Example: Start at E, go to I.

Expanded: E B D F H A C G
Agenda: Z EG EO EF EH EBA EBC EDA EDG EFC EFI EHG EHI $\begin{array}{lllllllllllll}0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$

Too much time searching paths on wrong side of starting point!

Heuristics

Our searches so far have radiated outward from the starting point. We only notice the goal when we stumble upon it.

This results because our costs are computed for just the first part of the path: from start to state under consideration.

We can add heuristics to make the search process consider not just the starting point but also the goal.

Heuristic: estimate the cost of the path from the state under consideration to the goal.

Heuristics

Add Manhattan distance to complete the path to the goal.

Expanded:
Agenda: E
2

Heuristics

Add Manhattan distance to complete the path to the goal.

Expanded: E
Agenda: $\begin{array}{cccccc}\underline{Z} & \text { EB } & \text { ED } & \text { EF } & \text { EH } \\ 2 & 4 & 4 & 2 & 2\end{array}$

Heuristics

Add Manhattan distance to complete the path to the goal.

Expanded: E F
Agenda: $\begin{array}{ccccccccc}\underline{Z} & \text { EB } & \text { ED } & \text { EF } & \text { EH } & \text { EFC } & \text { EFI } \\ 2 & 4 & 4 & 2 & 2 & 4 & 2\end{array}$

Heuristics

Add Manhattan distance to complete the path to the goal.

Expanded: E F H
Agenda: $\begin{array}{cccccccccc}\mathbb{Z} & \text { EB } & \text { ED } & \text { EF } & \text { EH } & \text { EFC } & \text { EFI EHG EHI } \\ 2 & 4 & 4 & 2 & 2 & 4 & 2 & 4 & 2\end{array}$

Heuristics

Add Manhattan distance to complete the path to the goal.

Expanded: E F H
Agenda: $\begin{array}{ccccccccccc}\text { Z } & \text { EB } & \text { ED } & \text { EF } & \text { EH } \\ 2 & 4 & 4 & 2 & 2 & 4 & 2 & 4 & 2\end{array}$

$A^{*}=$ ucSearch with Heuristics

A heuristic function takes input s and returns the estimated cost from state s to the goal.

```
def ucSearch(initialState, goalTest, actions, successor, heuristic):
```

 startNode = SearchNode(None, initialState, None, 0)
 if goalTest(initialState):
 return startNode.path()
 agenda \(=P Q()\)
 agenda.push (startNode, 0)
 expanded = \{ \}
 while not agenda.empty():
 \(\mathrm{n}=\) agenda.pop()
 if not expanded.has_key(n.state):
 expanded[n.state] = True
 if goalTest(n.state):
 return n.path()
 for a in actions:
 (news, cost) = successor(n.state, a)
 if not expanded.has_key(newS):
 newN = SearchNode(a, newS, n, cost)
 agenda.push(newN, newN.cost + heuristic(newS))
 return None

Admissible Heuristics

An admissible heuristic always underestimates the actual distance.
If the heuristic is larger than the actual cost from s to goal, then the "best" solution may be missed \rightarrow not acceptable!

If the heuristic is smaller than the actual cost, the search space will be larger than necessary \rightarrow not desireable, but right answer.

The ideal heuristic should be

- as close as possible to actual cost (without exceeding it)
- easy to calculate

A* is guaranteed to find shortest path if heuristic is admissible.

Check Yourself

Consider three heuristic functions for the "eight puzzle":
a. 0
b. number of tiles out of place
c. sum over tiles of Manhattan distances to their goals

Let $M_{i}=\#$ of moves in the best solution using heuristic i Let $E_{i}=\#$ of states expanded during search with heuristic i

Which of the following statements is/are true?

$$
\begin{array}{ll}
\text { 1. } M_{a}=M_{b}=M_{c} & \text { 2. } E_{a}=E_{b}=E_{c} \\
\text { 3. } M_{a}>M_{b}>M_{c} & \text { 4. } E_{a} \geq E_{b} \geq E_{c}
\end{array}
$$

5. the same "best solution" will result for all three heuristics

Check Yourself

Heuristic a: 0
Heuristic b: number of tiles out of place
Heuristic c: sum over tiles of Manhattan distances to their goals

- All three heuristics are admissible \rightarrow each gives an optimum length solution: $M_{a}=M_{b}=M_{c}$.
- heuristic $\mathrm{c} \geq$ heuristic $\mathrm{b} \geq$ heuristic $\mathrm{a} \rightarrow E_{a} \geq E_{b} \geq E_{c}$.
- Different heuristics can consider multiple solutions with same path cost in different orders.

Check Yourself

Consider three heuristic functions for the "eight puzzle":
a. 0
b. number of tiles out of place
c. sum over tiles of Manhattan distances to their goals

Let $M_{i}=\#$ of moves in the best solution using heuristic i Let $E_{i}=\#$ of states expanded during search with heuristic i

Which of the following statements is/are true?

$$
\begin{array}{ll}
\text { 1. } M_{a}=M_{b}=M_{c} & \text { 2. } E_{a}=E_{b}=E_{c} \\
\text { 3. } M_{a}>M_{b}>M_{c} & \text { 4. } E_{a} \geq E_{b} \geq E_{c}
\end{array}
$$

5. the same "best solution" will result for all three heuristics

Check Yourself

Results.

Heuristic a: 0
Heuristic b: number of tiles out of place
Heuristic c: sum over tiles of Manhattan distances to their goals

Heuristic	visited	expanded	moves
a	177,877	121,475	22
b	26,471	16,115	22
c	3,048	1,859	22

Heuristics can be very effective!

Summary

Developed a new class of search algorithms: uniform cost.
Allows solution of problems with different action costs.
Developed a new class of optimizations: heuristics.
Focuses search toward the goal.

Nano-Quiz Makeups: Wednesday, May 4, 6-11pm, 34-501.

- everyone can makeup/retake NQ 1
- everyone can makeup/retake two additional NQs
- you can makeup/retake other NQs excused by $\mathrm{S}^{\wedge} 3$

If you makeup/retake a NQ, the new score will replace the old score, even if the new score is lower!

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

