
6.02 F #1

6.02 Fall 2012
Lecture #4

• Linear block codes
•  Rectangular codes
•  Hamming codes

all 2012 Lecture 4, Slide

Single Link Communication Model
End-host

6.02 Fall 2012 Lecture 4, Slide #2

Digitize
(if needed)

Original source

Source coding

Source binary digits
(“message bits”)

Bit stream

Render/display,
etc.

Receiving app/user

Source decoding

Bit stream

Channel
Coding

(bit error
correction)

Recv
samples

+
Demapper

Mapper
+

Xmit
samples

Bits Signals
(Voltages)

over
physical link

Channel
Decoding

(reducing or
removing
bit errors)

computers

Bits

6.02 Fall 2012 Lecture 4, Slide #3

Embedding for Structural Separation
Encode so that the codewords are far enough from
each other
Likely error patterns shouldn’t transform one codeword
to another

11 00 0 1

10
single-bit error may
cause 00 to be 10
(or 01)

110

000 0

1

100

010

111

001

101

011

01

Code: nodes chosen in
hypercube + mapping
of message bits to nodes

If we choose 2k out of
2n nodes, it means
we can map all k-bit
message strings in a
space of n-bit codewords.
The code rate is k/n.

000 010

6.02 Fall 2012 Lecture 4, Slide #4

If d is the minimum Hamming distance between
codewords, we can:

•  detect all patterns of up to t bit errors
 if and only if d ≥ t+1

•  correct all patterns of up to t bit errors
 if and only if d ≥ 2t+1

•  detect all patterns of up to tD bit errors
 while correcting all patterns of tC (<tD) errors
 if and only if d ≥ tC+tD+1

e.g.: d=4,

 tC=1, tD=2

Minimum Hamming Distance of Code vs.
Detection & Correction Capabilities

 Linear Block Codes

Block code: k message bits encoded to n code bits
i.e., each of 2k messages encoded into a unique n-bit
codeword via a linear transformation.

Key property: Sum of any two codewords is also a
codeword � necessary and sufficient for code to be
linear.

(n,k) code has rate k/n.
Sometime written as (n,k,d), where d is the minimum
Hamming Distance of the code.

6.02 Fall 2012 Lecture 4, Slide #5

Gener ator Matrix of Linear Block Code

Linear transformation:

 C=D.G

C is an n-element row vector containing the codeword

D is a k-element row vector containing the message

G is the kxn generator matrix

Each codeword bit is a specified linear combination of
message bits.

Each codeword is a linear combination of rows of G.

6.02 Fall 2012 Lecture 4, Slide #6

(n,k) Systematic Linear Block Codes
•  Split data into k-bit blocks
•  Add (n-k) parity bits to each block using (n-k) linear

equations, making each block n bits long

•  Every linear code can be represented by an equivalent
systematic form --- ordering is not significant, direct
inclusion of k message bits in n-bit codeword is.

•  Corresponds to using invertible transformations on
rows and permutations on columns of G to get

•  G = [I | A] --- identity matrix in the first k columns
6.02 Fall 2012 Lecture 4, Slide #7

Message bits Parity bits

k

n

n-k

6.02 Fall 2012 Lecture 4, Slide #8

Example: Rectangular Parity Codes

D1 D2

D3 D4

P3 P4

P1

P1 is parity bit
for row #1

Idea: start with rectangular
array of data bits, add parity
checks for each row and
column. Single-bit error in
data will show up as parity P2 (n,k,d)=?
errors in a particular row
and column, pinpointing the P4 is parity bit
bit that has the error. for column #2

0 1 1 0 1 1 0 1 1

1 1 0 1 0 0 1 1 1

1 0 1 0 1 0

Parity for each row Parity check fails for Parity check only fails
and column is row #2 and column #2 for row #2
correct ⇒ no errors ⇒ bit D4 is incorrect ⇒ bit P2 is incorrect

 Rectangular Code Corrects Single Errors

Claim: The min HD of the rectangular code with r
rows and c columns is 3. Hence, it is a single
error correction (SEC) code.

Code rate = rc / (rc + r + c).

6.02 Fall 2012 Lecture 4, Slide #9

D1 D2

D5 D6

P3

P5

P1

P2

D3 D4

D7 D8

D9 D10 D11 D12

P4 P7

If we add an overall parity bit P,
we get a (rc+r+c+1, rc, 4) code

Improves error detection but not
correction capability P

Proof: Three cases.
6

(1) Msgs with HD 1 � differ in 1 row and 1 col parity
(2) Msgs with HD 2 � differ in either 2 rows OR 2 cols
or both � HD ≥ 4
(3) Msgs with HD 3 or more � HD ≥ 4

P

 Matrix Notation
Task: given k-bit message, compute n-bit codeword. We can
use standard matrix arithmetic (modulo 2) to do the job. For
example, here’s how we would describe the (9,4,4) rectangular
code that includes an overall parity bit.

1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 1⎥

D1 D2 D3 D4[] ⎥ = D D D D[P P P P P]
0 0 1 0 0 1 1 0 1⎥ 1 2 3 4 1 2 3 4 5

⎥0 0 0 1 0 1 0 1 1

6.02 Fall 2012 Lecture 4, Slide #10

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•

1×k k×n 1×n
message generator code word
vector matrix vector

The generator matrix, Gkxn = Ik×k Ak×(n−k)
⎡
⎣⎢

⎤
⎦⎥

D1xk ⋅Gkxn =C1xn

Decoding Rectangular P arity Codes

Receiver gets possibly corrupted word, w.

Calculates all the parity bits from the data bits.

If no parity errors, return rc bits of data.

Single row or column parity bit error � rc data
bits are fine, return them

If parity of row x and parity of column y are in
error, then the data bit in the (x,y) position is
wrong; flip it and return the rc data bits

All other parity errors are uncorrectable. Return
the data as-is, flag an “uncorrectable error”

6.02 Fall 2012 Lecture 4, Slide #11

Let’ s do some rectangular parity decoding

6.02 Fall 2012 Lecture 4, Slide #12

Received codewords

1 0 1

0 1 0

0 1 1. Decoder action: ________________

0 0 0

1 1 1

1 1 2. Decoder action: ________________

0 0 1

0 1 0

0 0 3. Decoder action: ________________

D1 D2 P1

D3 D4 P2

P3 P4

How Many Parity Bits Do Really We Need?
•  We have n-k parity bits, which collectively can

represent 2n-k possibilities
•  For single-bit error correction, parity bits need to

represent two sets of cases:
–  Case 1: No error has occurred (1 possibility)
–  Case 2: Exactly one of the code word bits has an

error (n possibilities, not k)

•  So we need n+1 ≤ 2n-k

 n ≤ 2n-k – 1
•  Rectangular codes satisfy this with big margin ---

inefficient

6.02 Fall 2012 Lecture 4, Slide #13

 Hamming Codes

•  Hamming codes correct single errors with the
minimum number of parity bits:

 n = 2n-k – 1

•  (7,4,3)
•  (15,11,3)

•  (2m –1,2m -1-m,3)

•  --- “perfect codes” (but not best!)

6.02 Fall 2012 Lecture 4, Slide #14

Towards More Efficient Codes:
(7,4,3) Hamming Code Example

•  Use minimum number of parity bits, each covering
a subset of the data bits.

•  No two message bits belong to exactly the same
subsets, so a single-bit error

6.02 Fall 2012 Lecture 4, Slide #15

 will generate a unique
set of parity check errors.

Suppose we check the
parity and discover that P1

Modulo-2
D and P3 indicate an error?

addition, P 1 1 P2 bit D2 must have flipped
aka XOR

D What if only P2 indicates
4

D2 D an error?
P 3 P2 itself had the error! 1 = D1+D2+D4
P2 = D1+D3+D4

PP 3 3 = D2+D3+D4

D1+D

 Logic Behind Hamming Code Construction

•  Idea: Use parity bits to cover each axis of the
binary vector space
–  That way, all message bits will be covered with a unique

combination of parity bits

6.02 Fall 2012 Lecture 4, Slide #16

Index 1 2 3 4 5 6 7

Binary
index

001 010 011 100 101 110 111

(7,4)
code

P1 P2 D1 P3 D2 D3 D4

P1 with binary index 001 covers
P1 = D1+D2+D4
P2 = D1+D3+D4 D1 with binary index 011
P3 = D2+D3+D4 D2 with binary index 101

D4 with binary index 111

6.02 Fall 2012 Lecture 4, Slide #17

Syndrome Decoding: Idea
•  After receiving the possibly corrupted message (use

’ to indicate possibly erroneous symbol), compute a
syndrome bit (Ei) for each parity bit

•  If all the Ei are zero: no errors

•  Otherwise use the particular combination of the Ei
to figure out correction

E1 = D’1 + D’2 + D’4 + P’1
E2 = D’1 + D’3 + D’4 + P’2

E3 = D’2 + D’3 + D’4 + P’3

0 = D1+D2+D4+P1
0 = D1+D3+D4+P2

0 = D2+D3+D4+P3

Index 1 2 3 4 5 6 7

Binary
index

001 010 011 100 101 110 111

(7,4)
code

P1 P2 D1 P3 D2 D3 D4

Constr aints for more than single-bit errors

Code parity constraint inequality for single-bit errors

1+ n ≤ 2n-k

Write-out the inequality for t-bit errors

6.02 Fall 2012 Lecture 4, Slide #18

 Elementary Combinatorics

•  Given n objects, in how many ways can we choose
m of them?

If the ordering of the m selected objects matters, then
 n(n-1)(n-2) … (n-m+1) = n!/(n-m)!

If the ordering of the m selected objects doesn’t
matter, then the above expression is too large by a
factor m!, so

 ⎛n ⎞ n!
“n choose m” = ⎜ ⎟ =

⎝m⎠ (n−m)!m!

6.02 Fall 2012 Lecture 4, Slide #19

Error-Correcting Codes occur in many
other contexts too

•  e.g., ISBN numbers for books,
 0-691-12418-3

(Luenberger’s Information Science)

•  1D1+ 2D2+3D3+…+10D10 = 0 mod 11

Detects single-digit errors, and transpositions

6.02 Fall 2012 Lecture 4, Slide #20

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

