

INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2012 Lecture #4

- Linear block codes
 - Rectangular codes
 - Hamming codes

6.02 Fall 2012

Single Link Communication Model

Embedding for Structural Separation

Encode so that the codewords are "far enough" from each other

Likely error patterns shouldn't transform one codeword to another

Code: nodes chosen in hypercube + mapping of message bits to nodes

If we choose 2^k out of 2ⁿ nodes, it means we can map all k-bit message strings in a space of n-bit *codewords*. The **code rate** is **k/n**.

Minimum Hamming Distance of Code vs. Detection & Correction Capabilities

If d is the minimum Hamming distance between codewords, we can:

- detect all patterns of up to t bit errors if and only if d ≥ t+1
- correct all patterns of up to t bit errors if and only if d ≥ 2t+1

e.g.:

• detect **all** patterns of up to t_D bit errors while correcting all patterns of $t_C (< t_D)$ errors if and only if $d \ge t_C + t_D + 1$

Linear Block Codes

Block code: k message bits encoded to n code bits i.e., each of 2^k messages encoded into a unique n-bit codeword via a *linear transformation*.

Key property: Sum of any two codewords is *also* a codeword \rightarrow necessary and sufficient for code to be linear.

(n,k) code has rate k/n.

Sometime written as **(n,k,d)**, where **d** is the minimum Hamming Distance of the code.

Generator Matrix of Linear Block Code

Linear transformation:

C=D.G

C is an n-element row vector containing the codeword

D is a k-element row vector containing the message

G is the kxn *generator matrix*

Each codeword bit is a specified linear combination of message bits.

Each codeword is a linear combination of rows of G.

6.02 Fall 2012

Lecture 4, Slide #6

(n,k) Systematic Linear Block Codes

- Split data into *k*-bit blocks
- Add (*n-k*) parity bits to each block using (*n-k*) linear equations, making each block *n* bits long

n

- Every linear code can be represented by an equivalent systematic form --- ordering is not significant, direct inclusion of k message bits in n-bit codeword is.
- Corresponds to using invertible transformations on rows and permutations on columns of G to get
- G = [I | A] --- identity matrix in the first k columns

Example: Rectangular Parity Codes

Idea: start with rectangular array of data bits, add parity checks for each row and column. Single-bit error in data will show up as parity errors in a particular row and column, pinpointing the bit that has the error.

D ₁	D_2	P ₁
D_3	D ₄	P_2
P ₃	P ₄	

*P*₁ is parity bit for row #1

P_4	is	par	ity	bit
for	c cc	olun	nn	#2

(n,k,d)=?

011	0 1 1	011
1 1 0	100	111
1 0	1 0	10

Parity for each row and column is correct ⇒ no errors

Parity check fails for row #2 and column #2 \Rightarrow bit D₄ is incorrect Parity check only fails for row #2 \Rightarrow bit P₂ is incorrect

Rectangular Code Corrects Single Errors

Claim: The min HD of the rectangular code with *r* rows and *c* columns is **3**. Hence, it is a single error correction (SEC) code.

Code rate = rc / (rc + r + c).

If we add an overall parity bit P, we get a (rc+r+c+1, rc, 4) code

Improves error detection but not correction capability

Proof: Three cases.

(1) Msgs with HD 1 → differ in 1 row and 1 col parity
(2) Msgs with HD 2 → differ in either 2 rows OR 2 cols or both → HD ≥ 4

(3) Msgs with HD 3 or more \rightarrow HD \geq 4

D ₁	D_2	D_3	D_4	P_1
D ₅	D_6	D_7	D_8	P_2
D ₉	D ₁₀	D ₁₁	D ₁₂	P ₃
P ₄	P_5	P_6	P_7	Р

Matrix Notation

Task: given k-bit message, compute n-bit codeword. We can use standard matrix arithmetic (modulo 2) to do the job. For example, here's how we would describe the (9,4,4) rectangular code that includes an overall parity bit.

The generator matrix,
$$G_{kxn} = \begin{bmatrix} I_{k \times k} & A_{k \times (n)} \end{bmatrix}$$

6.02 Fall 2012

Lecture 4, Slide #10

-k)

Decoding Rectangular Parity Codes

Receiver gets possibly corrupted word, *w*.

Calculates all the parity bits from the data bits.

If no parity errors, return **rc** bits of data.

Single row or column parity bit error $\rightarrow rc$ data bits are fine, return them

If parity of row **x** and parity of column **y** are in error, then the data bit in the **(x,y)** position is wrong; flip it and return the **rc** data bits

All other parity errors are *uncorrectable*. Return the data as-is, flag an "uncorrectable error"

Let's do some rectangular parity decoding

Received codewords

DI	D2	PI
D3	D4	P2
P3	P4	

1. Decoder action:

2. Decoder action:

3. Decoder action: _____

How Many Parity Bits Do Really We Need?

- We have **n-k** parity bits, which collectively can represent **2^{n-k}** possibilities
- For **single-bit error** correction, parity bits need to represent two sets of cases:
 - Case 1: No error has occurred (1 possibility)
 - Case 2: Exactly one of the code word bits has an error (n possibilities, not k)
- So we need $\mathbf{n+1} \leq \mathbf{2^{n-k}}$

 $n \leq 2^{n-k} - 1$

• Rectangular codes satisfy this with big margin --- inefficient

Hamming Codes

• Hamming codes correct single errors with the minimum number of parity bits:

 $n = 2^{n-k} - 1$

- (7,4,3)
- (15,11,3)
- $(2^{m}-1, 2^{m}-1-m, 3)$
- --- "perfect codes" (but not best!)

Towards More Efficient Codes: (7,4,3) Hamming Code Example

- Use minimum number of parity bits, each covering a subset of the data bits.
- No two message bits belong to exactly the same subsets, so a <u>single-bit error</u> will generate a unique set of parity check errors.

Suppose we check the parity and discover that P1 and P3 indicate an error? bit D2 must have flipped

What if only P2 indicates an error? P2 itself had the error!

Logic Behind Hamming Code Construction

- Idea: Use parity bits to cover each axis of the binary vector space
 - That way, all message bits will be covered with a **unique** combination of parity bits

Index	I	2	3	4	5	6	7
Binary index	001	010	011	100	101	110	111
(7,4) code	PI	P2	DI	P3	D2	D 3	D 4

 $P_{1} = D_{1} + D_{2} + D_{4}$ $P_{2} = D_{1} + D_{3} + D_{4}$ $P_{3} = D_{2} + D_{3} + D_{4}$

 P_1 with binary index 00**1** covers

 D_1 with binary index 01**1** D_2 with binary index 10**1** D_4 with binary index 11**1**

6.02 Fall 2012

Lecture 4, Slide #16

Syndrome Decoding: Idea

 After receiving the possibly corrupted message (use 'to indicate possibly erroneous symbol), compute a syndrome bit (E_i) for each parity bit

 $E_{1} = D'_{1} + D'_{2} + D'_{4} + P'_{1} \qquad 0 = D_{1} + D_{2} + D_{4} + P_{1}$ $E_{2} = D'_{1} + D'_{3} + D'_{4} + P'_{2} \qquad 0 = D_{1} + D_{3} + D_{4} + P_{2}$ $E_{3} = D'_{2} + D'_{3} + D'_{4} + P'_{3} \qquad 0 = D_{2} + D_{3} + D_{4} + P_{3}$

- If all the E_i are zero: no errors
- Otherwise use the particular combination of the E_i to figure out correction $E_3 E_2 E_1$ | Corrective Action

Index	I	2	3	4	5	6	7
Binary index	001	010	011	100	101	110	
(7,4) code	PI	P2	DI	P3	D2	D 3	D 4

$E_{3}E_{2}E_{1}$	Corrective Action
000	no errors
001	p_1 has an error, flip to correct
010	p_2 has an error, flip to correct
011	d_1 has an error, flip to correct
100	p_3 has an error, flip to correct
101	d_2 has an error, flip to correct
110	d_3 has an error, flip to correct
111	d_4 has an error, flip to correct

Constraints for more than single-bit errors

Code parity constraint inequality for **single-bit** errors

 $1 + n \le 2^{n-k}$

Write-out the inequality for **t-bit** errors

Elementary Combinatorics

• Given n objects, in how many ways can we choose m of them?

If the ordering of the m selected objects matters, then $n(n-1)(n-2) \dots (n-m+1) = n!/(n-m)!$

If the ordering of the m selected objects doesn't matter, then the above expression is too large by a factor m!, so

"n choose m" =
$$\binom{n}{m} = \frac{n!}{(n-m)!m!}$$

Error-Correcting Codes occur in many other contexts too

- e.g., ISBN numbers for books, 0-691-12418-3
 (Luenberger's Information Science)
- $1D_1 + 2D_2 + 3D_3 + \dots + 10D_{10} = 0 \mod 11$

Detects single-digit errors, and transpositions

MIT OpenCourseWare http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.