

INTRODUCTION TO EECS II DIGITAL COMMUNICATION systems

6.02 Fall 2012 Lecture \#14

- Spectral content via the DTFT

Demo: "Deconvolving" Output of Channel with Echo

Suppose channel is LTI with

$$
\mathrm{h}_{1}[\mathrm{n}]=\delta[\mathrm{n}]+0.8 \delta[\mathrm{n}-1]
$$

$$
\begin{aligned}
\mathrm{H}_{1}(\Omega)=? ? & =\sum_{m} h_{1}[m] e^{-j \Omega m} \\
& =1+0.8 \mathrm{e}^{-\mathrm{j} \Omega}=1+0.8 \cos (\Omega)-\mathrm{j} 0.8 \sin (\Omega)
\end{aligned}
$$

So:

$$
\begin{aligned}
& \left|\mathrm{H}_{1}(\Omega)\right|=[1.64+1.6 \cos (\Omega)]^{1 / 2} \quad \text { EVEN function of } \Omega \\
& <\mathrm{H}_{1}(\Omega)=\arctan [-(0.8 \sin (\Omega) /[1+0.8 \cos (\Omega)] \quad O D D .
\end{aligned}
$$

A Frequency-Domain view of Deconvolution

Given $H_{1}(\Omega)$, what should $H_{2}(\Omega)$ be, to get $z[n]=x[n]$?

Inverse filter at receiver does very badly in the presence of noise that adds to $\mathrm{y}[\mathrm{n}]$:
filter has high gain for noise precisely at frequencies where channel gain $\left|\mathrm{H}_{1}(\Omega)\right|$ is low (and channel output is weak)!

DT Fourier Transform (DTFT) for Spectral Representation of General x[n]

If we can write

$$
\left.h[n]=\frac{1}{2 \pi} \int_{<2 \pi \gg} H(\Omega) e^{j \Omega n} d \Omega \quad \begin{array}{l}
\text { Any contiguous } \\
\text { interval of length }
\end{array}\right) \quad \text { where } H(\Omega)=\sum_{2 \pi} h[m] e^{-j \Omega m}
$$

$$
x[n]=\frac{1}{2 \pi} \int_{<2 \pi>} X(\Omega) e^{j \Omega n} d \Omega \quad \text { where } \quad X(\Omega)=\sum_{m} x[m] e^{-j \Omega m}
$$

This Fourier representation expresses $\mathrm{x}[\mathrm{n}]$ as a weighted combination of $e^{j \Omega n}$ for all Ω in $[-\pi, \pi]$.
$\mathrm{X}\left(\Omega_{0}\right) \mathrm{d} \Omega$ is the spectral content of $\mathrm{x}[\mathrm{n}]$ in the frequency interval $\left[\Omega_{0}, \Omega_{0}+\mathrm{d} \Omega\right]$

The spectrum of the exponential signal $(0.5)^{n} u[n]$ is shown over the frequency range $\Omega=2 \pi f$ in $[-4 \pi, 4 \pi]$, The angle has units of degrees.

Courtesy of Don Johnson. Used with permission; available under a CC-BY license.
hhttp://cnx.org/content/m0524/latest/

$x[n]$ and $X(\Omega)$

$h[n]$ for slow channel

Input/Output Behavior of LTI System in Frequency Domain

$$
\begin{array}{ll}
x[n]=\frac{1}{2 \pi} \int_{<2 \pi\rangle} X(\Omega) e^{ز \Omega n} d \Omega \\
H(\Omega)
\end{array} \begin{aligned}
& y[n]=\frac{1}{2 \pi} \int_{<2 \pi\rangle} H(\Omega) X(\Omega) e^{j \Omega n} d \Omega \\
& y[n]=\frac{1}{2 \pi} \int_{<2 \pi\rangle} Y(\Omega) e^{j \Omega n} d \Omega
\end{aligned}
$$

$Y(\Omega)=H(\Omega) X(\Omega)$
Compare with $\mathrm{y}[\mathrm{n}]=(\mathrm{h} * \mathrm{x})[\mathrm{n}]$
Again, convolution in time has mapped to multiplication in frequency

Magnitude and Angle

$Y(\Omega)=H(\Omega) X(\Omega)$

$$
|Y(\Omega)|=|H(\Omega)| .|X(\Omega)|
$$

$$
<Y(\Omega)=<H(\Omega)+<X(\Omega)
$$

Core of the Story

1. A huge class of DT and CT signals can be written --- using Fourier transforms --- as a weighted sums of sinusoids (ranging from very slow to very fast) or (equivalently, but more compactly) complex exponentials. The sums can be discrete \sum or continuous \int (or both).
2. LTI systems act very simply on sums of sinusoids: superposition of responses to each sinusoid, with the frequency response determining the frequency-dependent scaling of magnitude, shifting in phase.

Loudspeaker Bandpass Frequency Response

Altec immini

Bose SoundDock

Sony T33

© |PC Magazine. All rights reserved. This content is excluded from our Creative

Spectral Content of Various Sounds

Image by MIT OpenCourseWare.

Connection between CT and DT

The continuous-time (CT) signal

$$
x(t)=\cos (\omega t)=\cos (2 \pi f t)
$$

sampled every T seconds, i.e., at a sampling frequency of $f_{s}=1 / T$, gives rise to the discrete-time (DT) signal

$$
x[n]=x(n T)=\cos (\omega n T)=\cos (\Omega n)
$$

So

$$
\Omega=\omega \mathrm{T}
$$

and $\Omega=\pi$ corresponds to $\omega=\pi / \mathrm{T}$ or $\mathrm{f}=1 /(2 \mathrm{~T})=\mathrm{f}_{\mathrm{s}} / 2$

Signal $x[n]$ that has its frequency content uniformly distributed in $\left[-\Omega_{c}, \Omega_{c}\right.$]

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{<2 \pi>} X(\Omega) e^{j \Omega_{n}} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\Omega_{C}}^{\Omega_{C}} 1 \cdot e^{j \Omega n} d \Omega \\
& =\frac{\sin \left(\Omega_{C} n\right)}{\pi n}, \quad n \neq 0 \\
& =\Omega_{C} / \pi \quad, \quad n=0
\end{aligned}
$$

DT "sinc" function
(extends to $\pm \infty$ in time, falls off only as $1 / \mathrm{n}$)

$\mathrm{x}[\mathrm{n}]$ and $\mathrm{X}(\Omega)$

$\mathrm{X}(\Omega)$ and $\mathrm{x}[\mathrm{n}]$

Fast Fourier Transform (FFT) to compute samples of the DTFT for signals of finite duration

$\mathrm{X}\left(\Omega_{k}\right)=\sum_{m=0}^{P-1} x[m] e^{-j \Omega_{k} m}$,

$$
x[n]=\frac{1}{P} \sum_{k=-P / 2}^{(P / 2-1} X\left(\Omega_{k}\right) e^{i \Omega_{k} n}
$$

where $\Omega_{\mathrm{k}}=\mathrm{k}(2 \pi / \mathrm{P}), \mathrm{P}$ is some integer (preferably a power of 2) such that P is longer than the time interval [$0, \mathrm{~L}-1$] over which $\mathrm{x}[\mathrm{n}]$ is nonzero, and k ranges from $-\mathrm{P} / 2$ to $(\mathrm{P} / 2)-1$ (for even P).

Computing these series involves $\mathrm{O}\left(\mathrm{P}^{2}\right)$ operations - when P gets large, the computations get very s 1 o w....

Happily, in 1965 Cooley and Tukey published a fast method for computing the Fourier transform (aka FFT, IFFT), rediscovering a technique known to Gauss. This method takes O(P $\log \mathrm{P})$ operations.
6.02 Fall $2012 \quad \mathrm{P}=1024, \mathrm{P}^{2}=1,048,576, \quad \mathrm{P} \log \mathrm{P} \approx 10,240$

Where do the Ω_{k} live? e.g., for $\mathrm{P}=6$ (even)

Spectrum of Digital Transmissions

$\left|a_{k}\right|$ (scaled version of DTFT samples)

Spectrum of Digital Transmissions

Observations on previous figure

- The waveform x[n] cannot vary faster than the step change every 7 samples, so we expect the highest frequency components in the waveform to have a period around 14 samples. (The is rough and qualitative, as $\mathrm{x}[\mathrm{n}]$ is not sinusoidal.)
- A period of 14 corresponds to a frequency of $2 \pi / 14=\pi / 7$, which is $1 / 7$ of the way from 0 to the positive end of the frequency axis at π (so k approximately $100 / 7$ or 14 in the figure). And that indeed is the neighborhood of where the Fourier coefficients drop off significantly in magnitude.
- There are also lower-frequency components corresponding to the fact that the 1 or 0 level may be held for several bit slots.
- And there are higher-frequency components that result from the transitions between voltage levels being sudden, not gradual.

Effect of Low-Pass Channel

How Low Can We Go?

eye diagram

eye diagram

$x[n]$

eye diagram

eye diagram

7 samples/bit $\rightarrow 14$ samples/period $\rightarrow k=(N / 14)=(196 / 14)=14$

MIT OpenCourseWare
|http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems

Fall 2012

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

