

INTRODUCTION TO EECS II DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2012 Lecture #11

- Eye diagrams
- Alternative ways to look at convolution

Eye Diagrams

"Width" of Eye

To maximize noise margins:

Pick the best sample point \rightarrow widest point in the eye Pick the best digitization threshold \rightarrow half-way across width

Given h[n], you can use the eye diagram to pick the number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel is the minimum acceptable value.

6.02 Fall 2012

Constructing the Eye Diagram (no need to wade through all this unless you really want to!)

1. Generate an input bit sequence pattern that contains all possible combinations of B bits (e.g., B=3 or 4), so a sequence of 2^BB bits. (Otherwise, a random sequence of comparable length is fine.)

2. Transmit the corresponding x[n] over the channel (2^BBN samples, if there are N samples/bit)

- 3. Instead of one long plot of y[n], plot the response as an *eye diagram*:
 - a. break the plot up into short segments, each containing
 KN samples, starting at sample 0, KN, 2KN, 3KN, ... (e.g., K=2 or 3)
 - b. plot all the short segments on top of each other

Back To Convolution

From last lecture: If system S is both linear and time-invariant (LTI), then we can use the unit sample response h[n] to predict the response to *any* input waveform x[n]:

Sum of shifted, scaled unit sample functions

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \longrightarrow S \longrightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
CONVOLUTION SUM

Indeed, the unit sample response h[n] completely characterizes the LTI system S, so you often see

$$\mathbf{x}[\mathbf{n}] \longrightarrow \mathbf{h}[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

Unit Sample Response of a Scale-&-Delay System

$$x[n] \longrightarrow S \longrightarrow y[n]=Ax[n-D]$$

If S is a system that scales the input by A and delays it by D time steps (negative 'delay' D = advance), is the system

time-invariant? Yes!

linear? Yes!

Unit sample response is $h[n]=A\delta[n-D]$

General unit sample response

 $h[n]=... + h[-1] \delta[n+1] + h[0]\delta[n] + h[1]\delta[n-1]+...$

for an LTI system can be thought of as resulting from many scale-&-delays in parallel

A Complementary View of Convolution

So instead of the picture:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \longrightarrow h[.] \longrightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

we can consider the picture:

$$\mathbf{x}[\mathbf{n}] \longrightarrow \mathbf{h}[.]=...+\mathbf{h}[-1]\delta[\mathbf{n}+1]+\mathbf{h}[0]\delta[\mathbf{n}]+\mathbf{h}[1]\delta[\mathbf{n}-1]+... \longrightarrow \mathbf{y}[\mathbf{n}]$$

from which we get
$$y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

(To those who have an eye for these things, my apologies 6.02 Fall 2012 for the varied math font --- too hard to keep uniform!) Lecture 11, Slide #9

(side by side) $y[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} h[n]$

$$\sum_{m=-\infty}^{\infty} h[m]x[n-m] = (h*x)[n]$$

Input term x[0] at time 0 launches scaled unit sample response x[0]h[n] at output Unit sample response term h[0] at time 0 contributes scaled input h[0]x[n] to output

Input term x[k] at time k launches scaled shifted unit sample response x[k]h[n-k] at output Unit sample response term h[m] at time m contributes scaled shifted input h[m]x[n-m] to output

To Convolve (but not to "Convolute"!)

$$\sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

A simple graphical implementation:

Plot x[.] and h[.] as a function of the dummy index (k or m above)

Flip (i.e., reverse) one signal in time, **slide** it right by n (slide left if n is –ve), take the **dot.product** with the other.

This yields the value of the convolution at the single time n.

'flip one & slide by n.... dot.product with the other'

Example

• From the unit sample response h[n] to the unit step response

s[n] = (h *u)[n]

- Flip u[k] to get u[-k]
- Slide u[-k] n steps to right (i.e., delay u[-k]) to get u[n-k]), place over h[k]
- Dot product of h[k] and u[n-k] wrt k:

$$s[n] = \sum_{k=-\infty}^{n} h[k]$$

Channels as LTI Systems

Many transmission channels can be effectively modeled as LTI systems. When modeling transmissions, there are few simplifications we can make:

- We'll call the time transmissions start t=0; the signal before the start is 0. So x[m] = 0 for m < 0.
- Real-word channels are *causal*: the output at any time depends on values of the input at only the present and past times. So h[m] = 0 for m < 0.

These two observations allow us to rework the convolution sum when it's used to describe transmission channels:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=0}^{\infty} x[k]h[n-k] = \sum_{k=0}^{n} x[k]h[n-k] = \sum_{j=0}^{n} x[n-j]h[j]$$

6.02 Fall 2012 start at t=0 causal j=n-k Lecture 11. Slide #13

Properties of Convolution

$$(x*h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

The second equality above establishes that convolution is commutative:

$$x \ast h = h \ast x$$

Convolution is associative:

$$x * (h_1 * h_2) = (x * h_1) * h_2$$

Convolution is distributive:

$$x * (h_1 + h_2) = (x * h_1) + (x * h_2)$$

Series Interconnection of LTI Systems

$$\mathbf{x}[\mathbf{n}] \longrightarrow \mathbf{h}_1[.] \xrightarrow{\mathbf{w}[\mathbf{n}]} \mathbf{h}_2[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

$$y = h_2 * w = h_2 * (h_1 * x) = (h_2 * h_1) * x$$

$$\mathbf{x}[\mathbf{n}] \longrightarrow \qquad (\mathbf{h}_2 * \mathbf{h}_1)[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

$$\mathbf{x}[\mathbf{n}] \longrightarrow (\mathbf{h}_1 * \mathbf{h}_2)[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

$$\mathbf{x}[\mathbf{n}] \longrightarrow \mathbf{h}_2[.] \longrightarrow \mathbf{h}_1[.] \longrightarrow \mathbf{y}[\mathbf{n}]$$

"Deconvolving" Output of Echo Channel

Suppose channel is LTI with

 $h_{1}[n]=\delta[n]+0.8\delta[n-1]$

Find $h_2[n]$ such that z[n]=x[n]

 $(h_2 h_1)[n] = \delta[n]$

Good exercise in applying Flip/Slide/Dot.Product

"Deconvolving" Output of Channel with Echo

Even if channel was well modeled as LTI and $h_1[n]$ was known, noise on the channel can greatly degrade the result, so this is usually not practical.

Parallel Interconnection of LTI Systems

$$y = y_1 + y_2 = (h_1 * x) + (h_2 * x) = (h_1 + h_2) * x$$

$$\mathbf{x}[n] \longrightarrow (h_1 + h_2)[.] \longrightarrow \mathbf{y}[n]$$

6.02 Fall 2012

MIT OpenCourseWare http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.