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3.1 Introduction 

3.1.1 Background 

Diffusion is an important transport process in physical, chemical, and biological systems. 
Two theoretical models of diffusion capture complementary aspects of the phenomenon. 
The microscopic model describes the probabilistic behavior of a population of individ­
ual solute particles which execute statistically independent, but otherwise identical, ran­
dom walks. Software dealing with such a microscopic model of diffusion is described in 
Chapter 2. The software described in this chapter involves macroscopic diffusion which 
describes the aggregate behavior of large populations of solute molecules. 

3.1.2 Macroscopic Model of Diffusion 

In 1855, Adolph Fick proposed a macroscopic model for passive diffusion [Fick, 1855]. 
By analogy to Fourier’s law of heat conduction and Ohm’s law for electrical conduction, 
Fick proposed that the flux of solute particles at a point in space is proportional to the 
concentration gradient at that point. Mathematically, this relation is expressed by Fick’s 
First Law, which, in its one-dimensional form, is as follows: 

(3.1) 

is the solute flux. The constant of 

(in the absence of sources or sinks or of chemical reactions that create or destroy particles) 
results in a second relation between concentration and flux, the Continuity Equation: 

where is the solute concentration and 
proportionality, , is known as the diffusion coefficient. Conservation of solute particles 

(3.2) 

Differentiating both sides of Equation 3.1 with respect to and using the Continuity Equa­
tion yields Fick’s Second Law, or the One-Dimensional Diffusion Equation: 

(3.3) 

In principle, any one-dimensional diffusion process can be modelled by solving this equa­
tion subject to the appropriate initial conditions and boundary conditions. 

We next consider the same problem but with a body force acting uniformly on the solute 
particles so that they are convected and a chemical reaction occurring between the solute 
particles and the solvent. The solute flux, , is now the sum of the diffusive flux, given 
by Fick’s law, and the convective flux due to the body force. Thus, in this case, 

(3.4) 
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where is the convection velocity of the solute particles; i.e., the velocity at which the 
particles would move in response to the body force but no diffusion. If is the reaction rate 
between solute and solvent, then the Continuity Equation becomes 

(3.5) 

Combining these expressions yields a modified diffusion equation: 

(3.6) 

Thus, solute convection and a chemical reaction rate between solute and solvent appear as 
additional terms in the Diffusion Equation. 

If the initial concentration, is known in some region of space and if the relation 
between the concentration and flux is known at each boundary of this region, then a unique 
solution exists for . This agrees with intuition: given an initial concentration profile, 

, Fick’s laws govern the unique evolution of the concentration profile for all later 
times. 

3.1.3 Overview of Software 

While macroscopic diffusion has been successfully modelled by Fick’s equations, studying 
the equations alone provides only limited insight into the behavior of diffusion processes. 
The goal of this software is to help students gain intuition about diffusion in one dimension. 
The solutions to the diffusion equation are functions of two variables: one spatial variable, 

, and time, . These solutions can be plotted either as a function of time at a particular point 
in space or as a function of the spatial variable at a particular instant in time. Such isolated 
“snapshots”, however, do not fully convey the dynamic behavior of diffusion processes. 
With this software, the user can view a “movie” of the solute concentration or flux profile, 
as a function of position, as it evolves in time. Thus, the software enables the student 
learning about diffusion theory to gain intuition about the dynamic behavior of macroscopic 
diffusion processes. 

Furthermore, the software provides an opportunity for students to experiment with the 
macroscopic model. For example, the user can explore how changing the diffusion co­
efficient affects the time-course of the simulation. The user can also specify transparent 
or reflecting boundaries and can explore how a body force acting on the solute particles 
or a chemical reaction between solute and solvent influence the diffusion process. Thus, 
the software can be used as a tool for investigating how various parameters and boundary 
conditions influence diffusion. 

Five classes of initial concentration profiles, corresponding to five characteristic one-
dimensional diffusion problems, are implemented in the software (Figure 3.1). Four of 
these problems involve diffusion from a specified initial concentration profile contained 
within a single compartment (which may be infinite), while the fifth involves diffusion 
between two compartments, through a membrane. 
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Figure 3.1: Schematic representation of the five classes of initial concentration profiles for 
one-dimensional problems simulated by the software. 
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One-Compartment Diffusion 

In one-compartment diffusion problems, the initial concentration can be chosen to be one 
of four types: impulses, sinusoids, piece-wise constant, and arbitrary distributions. An 
impulse of solute concentration is a mathematical idealization corresponding to a finite 
amount of solute initially concentrated at a single point in space. The user can specify the 
magnitude and position of up to four impulses. This case illustrates diffusion from point 
sources. Initially sinusoidal concentration profile illustrate the spatial frequency response 
of a system governed by the Diffusion Equation, specifically, the low-pass spatial filtering 
effect of diffusion. By superimposing up to four sinusoids, the student can observe the de­
pendence of the space-time evolution of a concentration distribution on its spatial frequency 
content. An initial concentration profile may be piecewise-constant but contain jump dis­
continuities (as, for example, if a thin, impermeable membrane separating two baths with 
unequal solute concentrations is suddenly removed). The user can specify the magnitude 
and location of up to four such discontinuities. The user can also explore the response for 
more complicated initial conditions which can be specified by drawing on the workstation 
screen with a mouse. 

For these different initial distributions, the user can specify the boundary type (trans­
parent or reflecting), the value of the convection velocity, and the chemical reaction rate 
between the solute particles and the solvent. 

Two-Compartment Diffusion through a Membrane 

The user can also investigate diffusion between two well-stirred compartments, or baths, 
through a membrane which is permeable to the solute. Two-compartment diffusion through 
a membrane is an important transport process in biological systems. It can model, for 
example, diffusion between the cytoplasm of a cell and the extracellular fluid, across the 
plasma membrane. The baths are assumed to be well-stirred, so that the concentration 
within each bath varies with time only. The total amount of solute in the system is assumed 
to be finite. The user can specify the width of each bath and of the membrane, the initial 
concentration of each bath, and an arbitrary initial concentration profile in the membrane. 

3.2 Methods of Solution 

For several of the diffusion problems implemented in the software, exact solutions of the 
modified diffusion equation (Equation 3.6) are available in a form that makes computation 
efficient. Such solutions have been used wherever possible. The remainder of the solutions 
were obtained by numerical methods. The methods are described in some detail elsewhere 
[Berkenblit, 1990]; only a brief summary of the methods is given here. 

The method used to obtain solutions depends upon the type of boundary condition. 
Two types of boundary conditions for the diffusion problems can be selected by the user: 
transparent or reflecting boundary conditions. If transparent boundaries are specified, then 
the region over which diffusion occurs is infinite; the “boundaries” are merely the endpoints 
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of the region viewed by the user. At a reflecting boundary, on the other hand, the solute 
flux is constrained to be zero, since no solute particles can cross such a boundary. 

3.2.1 Exact Solutions 

Exact solutions were used to compute the response for all one-compartment diffusion prob­
lems with transparent boundaries. These are described in this section. 

Impulse response — Green’s function 

No convection, no chemical reaction. First we shall find the spatial and temporal evo­
lution of the solute concentration profile, , in the absence of convection and in the 
absence of a chemical reaction when the initial profile consists of a unit impulse in con­
centration, located at position and delivered at time . That is we need to find a 
solution to Equation 3.3 subject to the initial condition 

(3.7) 

(3.8) 

The solution, called the Green’s function , can be shown by a variety of methods 
to be 

Thus, the concentration profile is a Gaussian function of the spatial variable. The standard 
deviation of the curve, , increases with increasing time, but the total area under the 
concentration curve remains constant, corresponding to conservation of particles. 

Convection but no chemical reaction. We next consider the same problem but with a 
non-zero convection term. In this case, the concentration satisfies the modified diffusion 
equation, Equation 3.6, with : 

(3.9) 

with the initial condition 

(3.10) 

The solution can be shown to be 

(3.11) 

Thus, the response in this case is a Gaussian function, as before, but the entire profile 
“drifts” in the positive -direction with velocity . 
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Convection and chemical reaction. With a non-zero chemical rate, , and convection 
velocity, , we need to solve Equation 3.6 which has a solution 

(3.12) 

In general, if is the solution to Equation 3.3, with a specified initial concen­
tration profile and transparent boundaries, then the solution to the modified equation, 3.6, 
satisfying the same intitial conditions, is given by 

(3.13) 

Sinusoid 

First we consider the solution to Equation 3.3 with the initial condition 

(3.14) 

for some arbitrary constant amplitude, , spatial radian frequency, , and phase, . The 
solution for is given by 

(3.15) 

which can be verified by substituting this expression into Equation 3.3. Thus, an initially 
sinusoidal concentration profile remains sinusoidal for all later time, but the amplitude 
decreases exponentially with time. The rate of attenuation is proportional to the square of 
the spatial frequency. 

With convection and a chemical reaction between solute and solvent, the solution is 

(3.16) 

where is the convection velocity and is the reaction rate. 

Discontinuous Initial Profile 

We next consider the case of an initial profile that is piecewise-constant but contains a jump 
discontinuity at . The initial condition is that 

(3.17) 

which can also be written as 

(3.18) 
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For , we can integrate the Green’s function defined by Equation 3.8 to obtain the 
solution: 

(3.19) 

where the complementary error function, , is defined by the integral 

(3.20) 

With a convection velocity, , and reaction rate, , the solution is 

(3.21) 

Arbitrary Initial Profile 

Suppose is an arbitrary periodic function of , with period . Then can be 
expanded in a Fourier series, 

(3.22) 

where is the sequence of complex Fourier coefficients, defined by 

(3.23) 

By an extension of the solution for a sinusoidal initial profile, 3.15, the solution for 
is 

(3.24) 

Thus, the complex Fourier coefficients of can be obtained from the Fourier coef­
ficients of the initial profile, , by multiplying each term by the appropriate attenu­
ation factor. For simulation purposes, an arbitrary initial profile is represented as a dis­
crete sequence of samples. If is the number of samples per period, then the waveform 
is completely specified by its Fourier coefficients, obtained by taking the spatial Dis­
crete Fourier Transform of the initial profile. If is a power of two, then the transform 
can be computed efficiently via any of several Fast Fourier Transform (FFT) algorithms 
[Oppenheim and Schafer, 1975]. Applying this result, the evolution of a concentration pro­
file from an arbitrary periodic initial profile can be determined as follows: 
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1. Compute the FFT of and store the result. 

2. At any later time, , multiply each Fourier coefficient of by the appropriate 

attenuation factor, . 

3. Perform an inverse FFT to obtain . 

3.2.2 Numerical Solutions 

One-compartment problems with reflecting boundaries and the two-compartment problem 
are solved using numerical methods. To solve a diffusion problem numerically over some 
specified spatial region and some specified time interval, the position and time variables 
are discretized. Denoting the time increment by and the position increment by , we 
define 

(3.25) 

where 

(3.26) 

A general approach to solving partial differential equations numerically is to replace the 
partial derivatives by finite-difference approximations. The finite-difference expressions 
involve the terms defined above and result in sets of algebraic equations that can be 
solved by numerical methods for solving matrix equations. In the software, the equation 
with no convective term is solved by the implicit Crank-Nicolson algorithm, while for prob­
lems with a non-zero convective term, this algorithm is combined with the explicit Two-
Step Lax-Wendroff method [Press et al., 1988, Gerald and Wheatley, 1989] by a technique 
known as operator splitting. When a non-zero chemical reaction rate, , is specified, the 
computed concentration is multiplied by the attenuation factor, . The Crank-Nicolson 
and Lax-Wendroff formulas involve the parameters and 
for the one-compartment case and and for the two-
compartment case, where and are the widths of the baths of the two compartments. 
The numerical methods give stable solutions provided , , and . 

3.2.3 Summary 

A variety of techniques are used to find exact solutions to one-compartment diffusion prob­
lems with transparent boundaries. The specific methods used in the software to solve one-
compartment problems depend on the initial conditions and are summarized in Table 3.1. 
With two reflecting boundaries and in the absence of convection, the exact solutions con­
sist of infinite series. Thus it is cumbersome to compute these exact solutions. With two 
reflecting boundaries and with convection, exact solutions are in general not available. 
Therefore, we have chosen to solve these problems numerically using the Crank-Nicolson 
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Option 

Impulse 

Reflecting Crank-Nicolson 

Sinusoid 

Discontinuity 

Reflecting Crank-Nicolson 

Arbitrary FFT 

Reflecting Crank-Nicolson 

Crank-Nicolson 

Boundary Type Computational Method 

Transparent Exact solution (Gaussian) 

Transparent Exact solution (sinusoid) 

Transparent Exact solution (erfc) 

Transparent 

Two-Compartment 

Table 3.1: Summary of computational methods. 

and Lax-Wendroff methods. The latter methods are also used to compute the solutions to 
the two-compartment problem. 

3.3 User’s Guide to the Software 

3.3.1 Options and environments 

The four one-compartment diffusion problems and the two-compartment problem are im­
plemented in the software as five options: Impulse, Sinusoid, Discontinuity, Arbitrary, and 
Two-Compartment. At all times, one of these options is the current option. Each option 
has a corresponding set of parameters specific to that option. 

Impulse Parameters 

The magnitude and position of four impulses. The user can set the position of each 
impulse only if the magnitude is non-zero. 

The boundary type (transparent or reflecting), and, if the boundaries are reflecting, 
the positions of the two boundaries. 

Diffusion coefficient, convection velocity, and chemical reaction rate. 
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Sinusoid Parameters 

The amplitude, frequency, and phase of four sinusoids. The user can set the frequency 
and phase of a sinusoid only if its amplitude is non-zero. 

Diffusion coefficient, convection velocity, and chemical reaction rate. 

Discontinuity Parameters 

A constant concentration offset. 

The magnitude and position of four jump discontinuities. The user can set the posi­

tion only if the magnitude is non-zero.


Boundary type and position (for reflecting boundaries).


Diffusion coefficient, convection velocity, and chemical reaction rate.


Arbitrary Profile Parameters 

Boundary type and position (for reflecting boundaries).


Spatial period of the profile (for transparent boundaries).


The initial profile. The user draws the initial profile on the workstation screen by

moving the mouse. The details are described in Section 3.3.2.


Diffusion coefficient, convection velocity, and chemical reaction rate.


Two-Compartment Parameters 

Bath widths and the initial concentration in each bath.


Membrane width and the initial membrane concentration profile, drawn with the

mouse (as described in Section 3.3.2).


Diffusion coefficient, convection velocity, and chemical reaction rate.


The software is always in one of five environments. When the program is in the Pa­
rameters environment, the user can modify the values of the option-specific parameters, 
change the graph parameters, and run a simulation. The other environments (Simulate, 
Paused, Continue, and Done), indicate the state of a simulation run. These environments 
are described in more detail in Section 3.3.3. 

When the software is initiated, the Impulse option is initially selected and the program 
is in the Parameters environment. A typical session with the software consists of selecting 
one of the five options, modifying the values of the option-specific parameters and possibly 
the graph parameters, and then executing a simulation using the current parameter values. 
The results can be saved in a file or printed. 
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Figure 3.2: Appearance of the workstation screen after the software has been initiated. 

3.3.2 Screen Layout 

Figure 3.2 shows the appearance of the workstation screen after the software has been 
initiated. The screen is divided into a number of rectangular regions. 

Menubar 

The title bar at the top of the screen is generated by the window manager program. Just 
below this title bar is a menubar, containing entries labelled File, Print, Parameters, Sim­
ulate, and Quit. Pointing to one of these labels and clicking a mouse button causes the 
software to take an action that depends on which menubar entry was selected: 

File:	 Causes the file-handling menu to be posted. File handling is discussed in Sec­
tion 3.3.4. 

Print: Causes the printer menu to be posted so that a printed version of the screen contents 
may be obtained. Printing is discussed in Section 3.3.4. 

Parameters: Returns the software to the Parameters environment when a simulation run 
has been completed or paused. When the software is already in the Parameters envi­
ronment, this item is inactive and is displayed in gray (as in Figure 3.2). 
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Simulate: When the software is in the Parameters environment, clicking on this entry 
causes the Simulation Parameters menu to be posted. The parameters in this menu 
are discussed below, in the section on running a simulation (3.3.3). A simulation 
can only be run if a non-trivial initial concentration profile has been specified. In 
Figure 3.2, no non-zero impulses have been specified, so the initial concentration 
is identically zero. Thus, the Simulate menubar entry is currently inactive and is 
printed in gray. When a simulation is running, clicking on this menubar entry pauses 
the simulation, and clicking on it while a simulation is paused causes the paused 
simulation to resume running. 

Quit: Exits from the software. To prevent the user from exiting accidentally, a dialogue 
box is posted asking the user to confirm that he or she “really wants to quit.” 

Graphs 

Three graphs occupy large regions of the screen. The largest one is called the time graph, 
since it displays a plot of concentration, flux, or position versus any other one of these 
variables at each successive point in time during a simulation. The current simulation time 
is displayed in the title of the graph. In Figure 3.2, since no simulation is running, the 
simulation time is zero. Since no initial profile has been specified, no points are plotted. 

Clicking on the “Parameters” button in the upper right-hand corner of the time graph 
window causes a graph parameter menu to be posted in the graph window. The graph 
parameters (i.e., which variable is plotted on each axis, and the minimum and maximum 
axis bounds) can then be modified by selecting the appropriate menu entry. Axis bounds 
are modified by clicking on the menu entry and then typing in the modified value, followed 
by a carriage return or another button press on the same entry. The horizontal and vertical 
variables are implemented as toggle variables; clicking on one of these parameters causes 
it to toggle between two different values. There are three possible values for each variable 
(concentration, flux, and position), but the menu entry will only toggle between the two 
variables that are not displayed on the other axis. Thus, trivial plots of one variable versus 
itself are avoided. To save time when changes are made to the parameters, the graph is not 
redrawn until the user exits from the menu (by clicking on the “DONE” entry or clicking 
outside the menu). The user can force the graph to be redrawn at any time by clicking on 
the “REDRAW GRAPH” menu entry. 

The two smaller graphs at the bottom of the screen are the position graphs; each dis­
plays a plot of concentration, flux, or time versus any other one of those variables at a fixed 
position. The parameters for each graph are modified by clicking on the “Parameters” 
button in the upper right-hand corner, as described for the time graph. 

The position corresponding to each position graph is indicated both in the graph title and 
by the two arrows just below the position axis of the time graph. By default, the positions 
are initially 0 and 1, as in Figure 3.2. To modify the position for one of the position 
graphs, the user clicks on the title region of the graph. A dialog box is then displayed in 
the graph window. The dialog box contains a button labelled “DONE” and a twiddle box 
which allows the user to make incremental changes to a variable. To change the value of 
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the position, the user can either click on the old value and type in a new one or use the 
twiddle box knobs to increment or decrement the value by a fixed amount. As the value is 
varied, the arrow on the position axis of the time graph moves to indicate the current value. 
No changes are permanent, however, until the user clicks on the DONE button. Clicking 
elsewhere aborts the procedure, and the position retains its previous value. 

Option Buttons 

In the upper left-hand corner of the screen, just below the menubar, five radio buttons, 
corresponding to the five options, are displayed. In figure 3.2, the Impulse button is high­
lighted, indicating that this option is currently selected. To change the current option, the 
user simply clicks on the name of the new option. 

Option-Specific Parameters 

Just below the option buttons, the option-specific parameters for the selected option are 
displayed. Often, a change in a parameter value requires that the time graph be redrawn 
to correctly portray the initial concentration profile. In order to speed up the parameter 
selection process, the graph is not redrawn every time such a change occurs. Instead, a 
button labelled “Redraw Graph” is posted in the center of the time graph whenever the 
graph is not up to date. Clicking on that button causes the graph to be redrawn. Thus, the 
time graph only needs to be redrawn once after changes to several parameters have been 
made. 

There are several types of parameters for each option. For most parameters, the name, 
units, and value are displayed. To modify the value of the parameter, the user clicks on the 
parameter and then types in the new value, followed either by a carriage return or another 
button press on the same parameter. Clicking a mouse button when the pointer is not on 
the parameter aborts the procedure and cause the parameter to retain its previous value. For 
parameters that represent positions (i.e., the positions of reflecting boundaries, impulses, 
or discontinuities), the value may also be modified by using the mouse, in the following 
manner: 

The user clicks on the parameter and then clicks in the time graph window. 

The cursor changes to a pointing hand when the pointer moves outside the bound­
aries of the time graph. When the pointer is within the graph boundaries, the cursor 
vanishes and a vertical line (or a horizontal line, in the unlikely case that position is 
plotted on the vertical axis) indicating the pointer position appears on the graph and 
moves with the pointer. 

Clicking any mouse button within the time graph window sets the parameter value 
to the current pointer position. Clicking outside the time graph window, on the other 
hand, aborts the procedure, and the parameter retains its previous value. 

This method can only be used if position is one of the variables plotted on the time graph 
and if the time graph is up to date (i.e., if the “Redraw Graph” button is not posted). 
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The boundary type is indicated by a toggle parameter whose value toggles between 
“TRANSPARENT” and “REFLECTING.” For the Arbitrary and Two-Compartment op­
tions, the user can draw an initial profile by clicking on the “DRAW INITIAL PROFILE” 
parameter and can erase an existing profile by selecting the “ERASE INITIAL PROFILE” 
parameter. The ERASE parameter does not become active until a profile has been drawn, 
and it becomes inactive after a profile has been erased. The implementation of the user-
drawn profile feature is described in the next section. 

User-Drawn Concentration Profile 

Representation of an Arbitrary Profile An arbitrary concentration profile is represented 
by the software as a sequence of concentration values at an arbitrarily spaced, monoton­
ically increasing sequence of position coordinates. The position and concentration coor­
dinates corresponding to the Arbitrary and Two-Compartment options are stored in span 
structures. A span structure has three members: the array of position coordinates, the cor­
responding array of concentration values, and a member indicating the number of points in 
the span. 

For computation purposes, the software must determine the initial concentration values 
at a specified number of equally spaced sample points. Such an array is generated from the 
span data as follows: 

For the Arbitrary option with transparent boundaries, the profile is assumed to be 
periodic; the period, specified by the user, may be longer than the length of the profile 
stored in the span structure. The period is divided into 256 equal subintervals. At 
each position, the initial concentration is determined by linear interpolation between 
the two surrounding points of the span. At points lying beyond the end of the span, 
the initial concentration is taken to be zero. For example, if the user has drawn 
a profile of length 1 cm and specified a period of 2 cm, the concentration will be 
identically zero for half of each period. 

For the Arbitrary option with reflecting boundaries, the distance between the bound­
aries is divided into a specified number of equally spaced points. The number of 
points is set by the user, using the Simulate menu, as discussed in Section 3.3.3. 
At positions that lie within the span, the initial concentration is determined by lin­
ear interpolation between the two surrounding points of the span, while at points 
lying outside the span, the initial concentration is taken to be zero. For the Two-
Compartment option, the initial membrane concentration profile is computed in the 
same manner. 

Drawing a Profile The user can draw an initial profile only if the time graph has concen­
tration plotted on its vertical axis and position on its horizontal axis. When the user clicks 
on the “DRAW INITIAL PROFILE” parameter (in the Arbitrary or Two-compartment op­
tion): the cursor changes to a pencil whenever the pointer is outside the time graph window; 
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when the pointer is within the time graph window, the cursor vanishes and the pointer po­
sition is indicated by vertical and horizontal cross-hairs. 

Drawing a profile consists of generating a list of concentration values at a corresponding 
array of positions. The user selects these points by moving the mouse and clicking any 
mouse button. As the pointer moves within the window, a “rubber-band” line joins the last 
point which was selected to the current pointer position. There are two modes of action 
that the user can use to draw the profile: 

Clicking a mouse button within the time graph window adds a position and concen­
tration value to the coordinate lists and draws a line segment from the previous point 
to the current point. In this manner, the user can construct a profile made up of line 
segments. 

Moving the mouse while a mouse button is held down causes a series of points to be 
added to the coordinate lists. In this manner, the user can construct more complicated 
curves. 

The two methods can be combined in drawing a single profile. As soon as a complete 
profile has been drawn, the drawing routine terminates and stores the profile data in the 
appropriate span structure. 

When a button is pressed, the position and concentration that are added to the coordinate 
arrays depend on the pointer location: 

A button press at a position that does not lie to the right of the previous point is 
ignored, in order to ensure that the user-drawn concentration profile is a single-valued 
function of position. 

If a button is pressed within the boundaries of the time graph, then the coordinates of 
the pointer location are added to the list. 

If a button is pressed outside the boundaries of the graph (but still within the graph 
window), then the point that is added to the list is the point of intersection between 
the graph boundary and a line from the previous point to the current position. Thus, 
while a profile is being drawn, it is constrained to lie entirely within the boundaries 
of the graph. 

By default, the concentration at the left-hand point of the profile is zero. The user 
can change the first value, however, by making the first button press at the desired 
vertical location but to the left of the concentration axis. 

Clicking outside the time graph window at any time aborts the drawing procedure. 

3.3.3 Running a Simulation 

Once a non-trivial initial concentration profile exists for the current option, the user can 
run a simulation. The following criteria are used to determine whether a non-trivial initial 
profile has been specified: 
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Figure 3.3: Appearance of the workstation screen after an initial concentration profile, consisting of 
two impulses, has been specified but the simulation has not yet been run. 

For the Impulse, Sinusoid, and Discontinuity options, a non-trivial profile exists if 
there is at least one impulse, sinusoid, or discontinuity of non-zero magnitude. 

For the Arbitrary and Two-Compartment options, a profile exists if the user has drawn 
a complete profile (and not erased it). 

The “Simulate” menubar entry is active only when an initial profile exists for the current 
option. Figure 3.3 shows the appearance of the workstation screen when a typical initial 
profile has been specified but the simulation has not yet been run. In this case, the profile 
consists of two impulses, which are indicated schematically by tall vertical arrows on the 
time graph with the magnitude of each impulse displayed in parentheses next to each arrow. 
The positions corresponding to each position graph have been changed from their default 
values, and the variables and axis bounds of the position graphs have been modified. 

During a simulation run, the concentration and/or flux are computed at successive points 
in time until the specified final time. At each step, the time is incremented by a specified 
amount. The final time and the time increment are set by clicking on the “Simulate” entry in 
the menubar at the top of the screen. The menu which is then posted contains the following 
entries: 
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Final time: The time (in seconds) at which the simulation will end. This is the simulation 
time, not actual elapsed time. 

Time increment: Amount (in seconds) by which the simulation time is incremented at 
each step. This increment is different from the integration time increment used in the 
numerical computation methods. 

Number of sample points: For computations involving the Crank-Nicolson algorithm, the 
number of spatial sample points. This parameter is inactive if another computation 
method is used. The default value is 128, but it can be set as high as 256 for greater 
accuracy or as low as 32 for greater speed. The value does not have to be a power of 
two, but since the region of the workstation screen in which the time graph is plotted 
is 512 pixels wide, setting this number to be power of two ensures that the sample 
points will be evenly spaced. 

START SIMULATION: Starts the simulation run. 

EXIT FROM MENU: Exits from the menu without starting a simulation run. Clicking a 
mouse button anywhere outside the menu window has the same effect. 

When a simulation run is started, the program enters the Simulate environment. The 
graph parameter buttons disappear, the initial concentration profile is replotted if necessary, 
and all the menubar entries are inactivated except the Simulate entry, whose name changes 
to “Pause.” At each step of the simulation, the following sequence of actions occurs: 

The simulation time is incremented by the specified amount, and the new simulation 
time is displayed in the title of the time graph. 

The specified time graph parameters (concentration and/or flux) are computed as 
functions of position at the current time, and the time graph is replotted. 

The specified position graph parameters for each graph are computed at the current 
time and the specified positions, and a new point is added to each position graph. 

Pausing and Resuming a Simulation 

Clicking on the Pause entry of the menubar while a simulation is running suspends the 
simulation. The program enters the Paused environment, in which the Print, Parameters, 
Help, and Quit menubar entries are activated. The name of the Pause entry changes to “Re-
sume”; clicking on this entry causes the paused simulation to resume running. Clicking on 
the Parameters entry, however, returns the software to the Parameters environment and re­
sets the simulation time to zero. When a simulation is paused, the graph parameter buttons 
reappear, so that the graph parameters may be modified. The positions corresponding to 
each position graph, however, can only be modified from the Parameters environment. 
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Figure 3.4: Appearance of the workstation screen after a simulation has been continued four times. 
The software is now in the Done environment; the “Done” menubar entry is inactive since the 
simulation cannot be continued further. 

Continuing a Simulation 

When the simulation time has reached the specified final time, the simulation halts. The 
isolated points plotted on the position graphs are joined by lines, and the software enters 
the Continue environment. In this environment, all the menubar entries are active, and 
the name of the Simulate entry is changed to “Continue.” Clicking on this entry causes a 
menu similar to the Simulate menu to be posted. By selecting the appropriate entries from 
this menu, the user can modify the time increment and the new final time; clicking on the 
“CONTINUE SIMULATION” entry causes the simulation to continue running, from the 
current time until the specified final time. 

A simulation run may be continued up to four times. After the fourth continuation, the 
software enters the Done environment. This environment resembles the Continue environ­
ment, except that the name of the Continue menubar entry is changed to “Done” and this 
entry is inactive, since the simulation cannot be continued further. The user can return to 
the Parameters environment (by clicking on the appropriate menubar entry) to run a new 
simulation. Figure 3.4 shows the workstation screen after a simulation has been continued 
four times. 
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Summary of a Simulation Run 

After setting the option-specific parameters for the current option, the user can set the 
simulation parameters and start a simulation. While a simulation is running, it can be 
paused by clicking on the Pause menubar entry; a paused simulation can be made to resume 
by clicking on the Resume menubar entry. When a simulation run has finished, it may be 
continued up to four times by clicking on the Continue menubar entry and selecting the 
appropriate entry from the menu. After four continuations, the simulation is done and may 
not be continued again. Clicking on the Parameters menubar entry returns the software to 
the Parameters environment. 

3.3.4 Saving Results 

Simulation parameters and results may be preserved in two ways: by obtaining a hardcopy 
printout of the screen image and by saving the simulation state in a data file, which can be 
read in by the simulation at a later time. 

Printing 

To obtain a printed copy of the screen contents, the user simply clicks on the “Print” 
menubar entry, which is active in all environments except the Simulate environment (i.e., 
while a simulation is running). Clicking on this entry causes a menu to appear which con­
tains a list of all available printers. The screen contents are sent to the printer selected by 
the user; alternatively, the user can select the “Default Printer” entry, in which case the 
user’s default printer is used. 

File Handling 

Clicking on the “File” menubar entry, which is active in the Parameters, Continue, and 
Done environments, causes the file-handling menu to be posted. Selecting the appropriate 
entry from this menu allows the user to read from a data file, write the current state of the 
software to a data file, or delete a file. Selecting any one of these entries cause a file dialog 
box to be posted in the center of the screen. For the diffusion software, all data files have 
the extension “.D”. Currently, only one file may be selected at a time. 

The following data are written to the file: 

The application name and version (“diffuse, version 1.0”), file name, date and time. 

The current option, followed by the values of all option-specific parameters that have 
values that the user can modify. 

For the Arbitrary and Two-Compartment options, information about the user-drawn 
profile (as stored in the appropriate span structure). 

The position graph locations. 
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The axis bounds. 

Time graph parameters. 

Simulation parameters (including the simulation time, number of iterations, and 
number of continuations) and the current environment. 

For cases in which the Crank-Nicolson method is used, the current concentration 
profile. 

Time graph plotting data. 

Position graph parameters and plotting data. 

Thus, the current state of the simulation is written to the data file. A file may be written 
when the software is in the Parameters, Continue, or Done environment. An error message 
is posted if the software is unable to write to the specified file. Reading a file into the 
software results in reading the above items from the specified file and resetting all the 
parameters. An error message is posted if the specified file could not be opened for reading, 
if the file is of the wrong format, or if the user tries to read a file when the software is not 
in the Parameters environment. 

3.3.5 Numerical issues 

Computations of concentration and flux are performed at each point in time at 256 points 
equally spaced between the position axis bounds. These results are used to plot the time 
and space graphs. As indicated in Table 3.1, for the Impulse, Sinusoid, and Discontinuity 
options with transparent boundaries, the exact solution described in Section 3.2 are im­
plemented directly. For the Arbitrary option with transparent boundaries, the profile is 
assumed to be periodic in space. The spatial period is one of the option-specific parameters 
for the Arbitrary option; thus, its value is chosen by the user. However, the period must be 
chosen to be at least as long as the length of the span of the user-drawn profile. The initial 
concentration profile is constructed from the span structure as described in Section 3.3.2. 
The FFT methods is used to compute the concentration at any later time. 

For all one-compartment problems with reflecting boundaries, as well as the Two-
Compartment option, numerical methods are used to approximate the solutions. The value 
of used in the numerical methods must be chosen small enough so that the methods are 
stable. The software determines such values of automatically. However, for a particular 
choice of parameters, the maximum value of that can be used will often be smaller, and 
sometimes considerably smaller, than the time increment specified for the simulation run. 
Note — the increments at which the solution is computed is not the same as the time incre­
ment between displayed solutions. Thus, at each step of the simulation, many iterations of 
the numerical methods must be performed. When the user starts a simulation, the software 
determines the number of iterations, , that must be performed at each step. Depending 
on the value of this number, one of several actions then occurs: 
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If , the simulation run proceeds normally. 

If , a message is posted warning the user that the simulation will 
be “somewhat slow,” due to the large number of computations to be performed. The 
user must click in the message window to continue. 

If , a more emphatic message is posted, warning the user that the 
simulation “will be slow.” The user can abort the simulation run by clicking on the 
“Pause” entry in the menubar and then returning to the Parameters environment. 

Finally, if , the software posts a message warning the user that the simu­
lation could not be run because of the huge number of computations required. 

3.4 Problems 

Problem 3.1 In this problem you will investigate the space-time evolution of solute diffu­
sion from a point source. For all parts of this problem use a single impulse and transparent 
boundaries. Set the impulse strength to 100 moles/cm , place the impulse at position 0.5 
cm, and set the drift velocity and the reaction rate to zero. Set the position for the posi­
tion graphs to 0.55 and 0.6 cm unless indicated otherwise. Set the diffusion coefficient to 

cm s and run the simulation for 1000 seconds (simulation time). Obtain a print of the 
solution on appropriate ordinate scales. The time graph should contain the spatial distribu­
tion of concentration at 1000 seconds and position graphs should contain the concentration 
versus time at the two position. Also obtain a print of the flux versus position and time for 
the same parameters. Repeat these two steps for a diffusion coefficient of cm s. 

a) Describe qualitatively the effect of the change in diffusion coefficient on the spatial 
distribution of concentration. Be brief. 

b) Using the time graph, determine for both values of the diffusion coefficient the max­
imum amplitude of the concentration versus position and the width of the spatial 
distribution of concentration at an amplitude that is of its peak value. Explain the 
numerical values of all four measurements. Be brief and precise; state your assump­
tions explicitly. 

c) For the diffusion coefficient at cm s, examine the concentration versus time at 
the two positions 0.55 and 0.6 cm. Describe qualitatively the differences in concen­
tration versus time at the two positions. Be brief. 

d) For the diffusion coefficient at cm s, measure the maximum concentration 
as a function of time at the two positions and the time of occurrence of this maxi­
mum. Explain the values of all four measurements. Be brief and precise; state your 
assumptions explicitly. 
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e) Explain the shape of the spatial distribution of flux for a diffusion coefficient of 
cm s. 

f) Explain the relation between the flux and concentration versus time at location 0.55 
cm for a diffusion coefficient of cm s. 

g) Rerun the simulation for a diffusion coefficient of cm s at positions 0.45 and 
0.55 cm. Explain the differences in the flux as a function of time for these two 
locations. 

Problem 3.2 This problem deals with the solution from a point source in the presence 
of convection. Set the impulse strength to 100 moles/cm ; place the impulse at position 
0.5 cm; set the diffusion coefficient to cm s, and the reaction rate to zero. Set the 
position for the position graphs to 0.75 and 0.9 cm unless indicated otherwise. 

a) Set the boundary conditions to TRANSPARENT and the drift velocity to zero and 
run the simulation for 1000 s. Now set the drift velocity to cm/s and run the 
simulation again for 1000 s. Describe the effect of the convection on the spatial 
distribution of concentration. Account quantitatively for the position of the peak of 
the spatial distribution at 1000 s. 

b) Set the boundary conditions to REFLECTING and the drift velocity to zero. Run 
the simulation until the spatial distribution is no longer a function of time. This is 
the equilibrium distribution. What is the spatial distribution at equilibrium? Explain 
your answer. 

c) Set the boundary conditions to REFLECTING, the drift velocity to cm/s, and 
run the simulation. Describe the effect of convection on the spatial distribution of 
concentration. Illustrate your description with printed copies of the distribution at 
characteristic times. 

d) With the boundary conditions still set to REFLECTING and the drift velocity cm/s, 
determine the equilibrium spatial distribution of concentration. Account quantita­
tively for this distribution. 

e) It is known that the density of air decreases exponentially with distance above the 
earth’s surface. Explain this phenomenon. 

Problem 3.3 Two-compartment diffusion was examined in Chapter 3 of the Notes begin­
ning with 4 assumptions: 

1. The two compartments are well-mixed so that the concentrations of solute are 
uniform and have values at time of and . 

2. Solute particles are conserved, e.g., there is no chemical reaction present that either 
creates or destroys particles. 
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3. The membrane is sufficiently thin and the number of solute particles contained in the 
membrane at any time is negligibly small. 

4. The membrane is sufficiently thin that at each instant in time the concentration profile 
in the membrane is in steady state. 

This problem concerns the conditions for the validity of assumptions 3 and 4. Specifically, 
you will explore the effect of bath dimensions on two-compartment diffusion without mak­
ing these two assumptions. 

In all parts of the problem, use the Two-compartment mode of the software. Set the 
membrane Width to 0.01 cm, and the concentration of Bath #1 to 70 and Bath #2 to 10 
mol/cm . Leave the Drift velocity and Reaction rate at 0 and the Diffusion Coefficient 
at 
membrane and a little of each bath are visible on the screen — e.g., display a portion of 
the bath that is 0.0005 cm to the left and right of the membrane. Note that the left edge of 
the membrane is at a position of 0 cm. Using DRAW INITIAL PROFILE, draw the initial 
concentration in the membrane. It is a bit tricky, but after a few trials you should get it. 

cm /s. Set the parameters of the plot of concentration versus position so that the 

.Make sure all ordinate scales on all plots are 0 to 100 mol/cm Keep these parameters 
fixed throughout this problem. Initially set the simulation parameters to be a Final time of 
5 s, a Time increment of 0.2 s, and the Number of sample points at 128. You may wish 
to adjust these parameters to observe different aspects of the diffusion processes. 

For each of the pairs of bath widths — Bath #1 = 1 cm, Bath #2 = 1 cm; Bath #1 = 0.1 
cm, Bath #2 = 0.1 cm; Bath #1 = 0.01 cm, Bath #2 = 0.01 cm; Bath #1 = 0.01 cm, Bath #2 
= 0.05 cm; Bath #1 = 0.001 cm, Bath #2 = 0.001 cm; — answer the following questions. 

a) Assess the validity of assumption 4. 

i) Make rough estimates of both the steady-state ( ) and equilibrium ( ) time 
constants from the computations. 

ii) Estimate the same two time constants from the developments in Chapter 3 of 
the Notes. 

iii) What is your conclusion based on your computations and your estimates of time 
constants? 

b) Assess the validity of assumption 3. 

i) Before you do the computation, make an estimate of the final concentration in 
each bath. Then do the computation, and check your initial estimates against 
the computed values 

ii) If they differ, explain the basis of the difference. 

iii) How good is the assumption that the quantity of solute in the membrane is 
negligible? If you decide that the quantity of solute in the membrane is not 
negligible, design a simulation experiment to test your conclusion. 

e) Are the bath concentrations exponential functions of time? Explain. 
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Problem 3.4 Some problems in diffusion with a reflecting boundary can be solved by us­
ing the solution for a transparent boundary and the method of images to match the reflecting 
boundary condition. This problem explores the successes and pitfalls of this method. In 
all parts of this problem, set the drift velocity to zero, the reaction rate to zero, and the 
diffusion coefficient to cm s unless state otherwise. 

a) Use REFLECTING boundaries, and an initial impulse of concentration of strength 
100 moles/cm located at 0.2 cm. Run the simulation for 1000 s and obtain a print of 
the spatial distribution of concentration at time 1000 s and the concentration versus 
time at locations 0 and 0.3 cm. 

b) At a reflecting boundary, the flux must be zero. Change the boundary condition 
to TRANSPARENT and determine the parameters of two impulses: one to match 
the left boundary condition and another to independently match the right boundary 
condition. Run the simulation again and compare with the results in part a). Does 
this “method of images” work exactly? Explain. 

Problem 3.5 Diffusion from an initial sinusoidal concentration distribution gives impor­
tant insights into the space-time evolution of diffusion processes. In all parts of this prob­
lem, use a drift velocity of zero, a reaction rate of zero, and a diffusion coefficient of 

cm s unless state otherwise. 

anda) Use an initial sinusoidal concentration distribution with amplitude 50 moles/cm 
a spatial frequency of 1 cycle/cm. Run the simulation for 1000 s and print the spa­
tial distribution of concentration at 1000 s and the concentration versus time at 0.25 
and 0.75 cm. Repeat this procedure for sinusoids with the same amplitudes but the 
following spatial frequencies: 3, 5, and 7 cycles/cm. Summarize your results both 
qualitatively (in words) and then quantitatively (with suitable calculations). 

b) Construct a periodic waveform from four sinusoids with the following amplitudes 
(moles/cm ) and spatial frequencies (cycles/cm): 105, 1; 35, 3; 21, 5; 15, 7. Run 
the simulation and observe the spatial distribution of concentration. Summarize your 
results and relate them to results of part a). 

c) Switch to the Arbitrary initial distribution option and set the boundary conditions to 
reflecting. Using the mouse draw an arbitrary, preferably jagged, initial profile. Run 
the simulation and watch the spatial distribution of concentration change. Summarize 
your results. What is the effect of diffusion on the spatial distribution? 
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