

6.033 Spring 2018
Lecture #3

• Operating systems
• Virtual memory
• OS abstractions

6.033 | spring 2018 | Katrina LaCurts
1

Lingering Problem

Client Server internet

load(amazon.com/buy.html?socks)

what if we don’t want our modules to be on entirely
separate machines? how can we enforce

modularity on a single machine?

6.033 | spring 2018 | Katrina LaCurts
2

 operating systems enforce modularity on
a single machine

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

6.033 | spring 2018 | Katrina LaCurts
3

operating systems enforce modularity
on a single machine using virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
virtualize memory (and corrupt) each others’ memory

virtualize2. programs should be able to communication communicate links

3. programs should be able to share a
CPU without one program halting the virtualize processors
progress of the others

6.033 | spring 2018 | Katrina LaCurts
4

operating systems enforce modularity
on a single machine using virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
virtual memory (and corrupt) each others’ memory

2. programs should be able to assume that they
communicate don’t need to

(for today)

3. programs should be able to share a assume one program
CPU without one program halting the per CPU
progress of the others (for today)

today’s goal: virtualize memory so that programs cannot refer
to each others’ memory

6.033 | spring 2018 | Katrina LaCurts
5

 how does a program use memory?

6.033 | spring 2018 | Katrina LaCurts
6

Multiple Programs
CPU1 (used by program1) main memory

232-1

instructions for
EIP program1

31 0

instructions for
CPU2 (used by program2) program2

data for program1EIP

31 0 data for program2
0

problem: no boundaries

6.033 | spring 2018 | Katrina LaCurts
7

Solution: Virtualize Memory

31 0

EIP
virtual

address
0

0

232-1

MMU uses program1’s table to translate
the virtual address to a physical address

physical
address

PTR

virtual physical
address memory CPU1 (used by program1) MMU
232-1 232-1

instructions for
program1

data for program1

instructions for
program2

data for program2

table for program1

table for program2
0

main memory
6.033 | spring 2018 | Katrina LaCurts

8

Storing the Mapping

naive method: store every mapping; virtual address acts as
an index into the table

0x00000000
0x00000001
0x00000002
0x00000003

…

0xbe26dc9
0xc090f81c
0xb762a572
0x5dcc90ee

…

32 bits per entry

232 entries

= 16GB to store the table

6.033 | spring 2018 | Katrina LaCurts
9

Using Page Tables

CPU1(used by program1)

EIP 0x00002148
31 0

MMU

0x00002148

index into
page table

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0x00004

to main0x00004148 memory

table for program1

0x00003

0x00000

0x00004

0x00005
…

(exists in main memory)

6.033 | spring 2018 | Katrina LaCurts
10

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits* per entry
= 4MB to store the table

* you’ll see why it’s not 20 bits in a second

6.033 | spring 2018 | Katrina LaCurts
11

Page Table Entries
page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

31 12 11 0

physical page number

present (P) bit: is the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address?

6.033 | spring 2018 | Katrina LaCurts
12

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits per entry
= 4MB to store the table

problem: 4MB is still a fair amount of space
6.033 | spring 2018 | Katrina LaCurts

13

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits per entry
= 4MB to store the table

solution: page the page table
6.033 | spring 2018 | Katrina LaCurts

14

did we achieve our goal? is a program’s
memory protected from corruption by

another program?

6.033 | spring 2018 | Katrina LaCurts
15

Page Table Entries
page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

31 12 11 0

physical page number

present (P) bit: is the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address?

user/supervisor (U/S) bit: does the program have
access to this address?

6.033 | spring 2018 | Katrina LaCurts
16

kernel manages page faults and
other interrupts

6.033 | spring 2018 | Katrina LaCurts
17

operating systems: enforce
modularity on a single machine via

virtualization

6.033 | spring 2018 | Katrina LaCurts
18

operating systems: enforce
modularity on a single machine via

virtualization and abstraction

6.033 | spring 2018 | Katrina LaCurts
19

#include <stdio.h>
#include <unistd.h>

void (*m)();

void f() {
printf("child is running m = %p\n", m);

}

int main() {
m = f;

if (fork() == 0) {
printf("child has started\n");
int i;
for (i = 0; i < 15; i++) {
sleep(1);
(*m)();

}
}

else {
printf("parent has started\n");
sleep (5);
printf("parent is running; let's write to m = %p\n", m);
m = 0;
printf("parent tries to invoke m = %p\n", m);
(*m)();
printf("parent is still alive\n");

}
}

m is a pointer to a function
that returns void

set m to point to f

Child: every second for
15 seconds, call m

Parent: overwrite
m and then call it

6.033 | spring 2018 | Katrina LaCurts
20

• Operating systems enforce modularity on a single
machine via virtualization and abstraction

• Virtualizing memory prevents programs from referring to
(and corrupting) each other’s memory. The MMU
translates virtual addresses to physical addresses using
page tables

• The OS presents abstractions for devices via system
calls, which are implemented with interrupts. Using
interrupts means the kernel directly accesses the
devices, not the user

6.033 | spring 2018 | Katrina LaCurts
21

MIT OpenCourseWare
https://ocw.mit.edu

6.033 Computer System Engineering
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

22

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	cover_h.pdf
	Blank Page

