
     

 
                  
                 

              
           

                

Massachusetts Real Time Transit Control (MassRTTC) 

A Group of 3 MIT Students in 6.033 

1 Introduction 

The MBTA bus network serves almost 400,000 people daily and i s hence key to the economic functioning of 
Greater Boston. To provide high quality service to i ts customers, the MBTA needs to provide frequent, reliable, 
and comfortable service. However, although bus routes are scheduled to meet even peak demands, 
unpredictable congestion and fluctuating demands can l ead to deteriorated quality of service. 

To meet these needs, MassRTTC is an integrated real-time control system designed to meet the following 
goals: 

• Frequent service. If routes are not serviced once every 20 minutes per stop, riders can perceive the
service as unreliable, discouraging them from using it. Thus, frequent service both meets the needs of
citizens and sustains ridership.

• Low headway variability. Inelastic bus demand means buses operating with scheduled headways can
meet demand. However, when a bus is late, especially during peak hours, it picks up more passengers,
increasing dwell times, further pushing it behind schedule. The following bus thus has fewer waiting
passengers, pushing it ahead of schedule. Eventually, the buses form a pair, doubling waiting times and
leaving the front bus overcrowded. This effect is known as bunching and is documented as a source
of unreliability by Strathman et al. (2003) and Xuan et al. (2016)[3][4]. Preventing this is key to
providing reliable service.

• Passenger comfort. The passenger to seat ratio on buses should be under 1.4, with less than one
passenger standing for every passenger seated.

• Resilience. The bus network should keep running smoothly even in case of unexpected failures such
as road closures or subway breakdowns.

MassRTTC includes automatic vehicle location and passenger counting systems. This is used by a 
central server to control and, if necessary, reroute buses. The server instructs operators to obey minimum 
and maximum dwell times to prevent bunching, informs them to new routing, and deploys reserve vehicles 
to meet unexpected demands. While automation will improve the efficiency of management, for certain 
decisions, the system defers authority to humans, who better understand the complexity of cities. 

2 System Design 

2.1 Components 

2.1.1 Buses 

The MBTA has 1036 total buses. Buses are equipped with automatic vehicle location, passenger counting 
and fare collection systems. A bus interface communicates with the driver. A payment interface records 
payments and CharlieCard information, including transfers. 

1



2.1.2 Network 

The buses, as well as the MBTA warehouse, each have a radio transmitter and receiver. Buses and the 
server can transmit and receive data simultaneously. During the day, buses can transmit data to the server 
or other buses using one of 10 frequencies, while the server can send data using its own dedicated frequency. 

At the warehouse buses can wirelessly communicate with increased throughput. Server machines com-
municate with each other via wired network. 

2.1.3 Server 

The server has a master-worker architecture. The master is the machine that directly communicates with 
buses via the transmitter. It stores data, communicates with buses, and assigns tasks (described in section 
2.3 ) to sub-masters. It also has an interface for system administrators to manually change system statuses, 
including deploying protocols for situations the server cannot detect, and querying the database. 

A sub-master breaks tasks down further and assigns them to workers. It analyzes the results from the 
workers and sends the analysis to the master. The analysis can include protocols to deploy, or data to store 
or send to buses. 

Sub-masters and workers are chosen randomly, and a sub-master for one task can be a worker for another. 
This ensures that tasks are split evenly, so that in case of a machine failure, less data of each type are lost 
and the system can recover more easily. 

2.2 Bus Data Collection 

Data are collected to allow the server to make informed decisions to maintain quality service. 

2.2.1 Vehicle location 

Buses collect GPS data each second. A bus decides that it has passed a stop when it passes in, and 
then out, of a 30m radius from a stop. The bus uses this information to display the next 3 stops on the bus 
interface. This slight overestimate prevents the display from changing before the bus has actually reached 
the stop. 

2.2.2 Passenger counting 

Buses rely on both beam sensor and security camera data to count passengers. The bus keeps a local 
count using its beam sensor, an overestimate because it cannot detect passengers alighting via the back 
door. If the passenger-seat ratio estimate exceeds 1.4, the bus sends 5 frames from its security camera to the 
servers for a more accurate count. Keeping an overestimate and only updating when the count is relevant 
reduces network and server load. 

2.2.3 Data transfer 

Buses send passenger count analysis, GPS and payment data to the server. Each bus stores its GPS 
reading every 5 seconds and sends them in batches to the server every minute. Data on the network are sent 
infrequently enough that the entire fleet can share the 10 frequencies without long delays. 

Fare and transfer data are stored in the bus control and transferred to the server at night for security. 

2.3 Server Data Processing 

The server does heavier computation to maintain quality functioning of the bus network. 

2



2.3.1 Passenger counting 

Every time the server receives a request to count the passengers on a bus, it runs a computer vision 
algorithm on the video frames provided. It then discards the frames, stores the count, and sends the count 
to the requesting bus. 

2.3.2 Detecting supply issues 

Bunching is an important cause of crowding and unreliability (section 1). MassRTTC distinguishes 
between deploys protocols to alleviate different high demand scenarios. For each route, the server checks for 
pairs of buses that are less than 3 minutes apart and considers three cases: 

• The leader bus is crowded and the follower is not. Separation is needed to balance the load and 
decrease wait times. The buses are flagged, Protocol 1 is initiated between the buses, and Protocol 2 
is initiated on the follower (sections 2.4.1 and 2.4.2). 

• Neither bus is crowded. Separation is required to meet frequency targets. The follower is flagged 
and Protocol 2 is initiated (section 2.4.2) 

• Both buses are crowded. Neither strategy will help. This may indicate that the entire route is 
crowded. If a number of consecutive buses on the route are too crowded, Protocol 3 is initiated (section 
2.4.3). 

Buses are unflagged once their headways are restored. 
Since the server counts passengers only on a subset of buses (section 2.2.2), it lacks accurate information 

about buses with low load. Hence, if a bus’s passenger count is stale (older than 5 minutes), it assumes 
that the bus is under low load. If it detects a congestion situation, it only flags buses that have fresh data. 
Otherwise, it sends a request to that bus get video data for verification. In order to deal with changing 
traffic data staleness, this algorithm is run every minute. 

2.3.3 Other Data Analysis 

Since these data are not used for real-time control, the analyses are only run at night. 

• Reliability. Based on location data, the server checks whether each bus reached its control points 
within 3 minutes of its schedule. The server also computes the mean and variance of headways, and 
uses this to estimate average waiting times. Ideal 20 minute service would result in 10 minute waiting 
times, and the server looks for routes that fail this target significantly. 

• Mobility patterns. Gordon (2012) describes techniques to estimate passenger destinations and trans-
fers even though passengers do not tap out or may use cash.[1] Combining this with census data can help 
planners better understand mobility patterns, including popular transfers, the prevalence of transit-
dependent passengers, and the coverage of the network. This can inform long-term adjustments to 
service. 

2.3.4 Storage 

The master stores GPS and payment data from the buses. It also stores passenger counts and analysis 
results, totaling merely 350GB/year. With 10TB of memory, it can store the data for decades. 

The master backs up data to a backup machine every night. 

3



2.4 Protocols 

2.4.1 Protocol 1: Bunching 

The server tells each flagged bus whether it is the leader or follower, and the ID number of the other bus 
(for communication). Every minute, the follower sends the leader an estimate of the time difference between 
them. The leader displays NOT IN SERVICE instead of its destination to prevent people from entering. Its 
interface tells the driver about the situation. The driver then does not allow more passengers to board at 
the next stop, instead informing them how long before the next bus arrives. 

Updating the time estimate every minute ensures that the driver always has a fresh estimate to tell the 
waiting passengers. 

2.4.2 Protocol 2: Holding 

When buses bunch, the server flags the follower bus, which informs the driver via the interface. The 
driver is then instructed to enforce maximum dwell times by simply waiting at stops. Sanchez-Martinez et 
al. (2016) states that this is the most effective and widely used method of preventing bunching. [2] 

2.4.3 Protocol 3: Allocating reserve buses 

In situations with unusually high demand, or where a subway breakdown or special event demands 
shuttling, the system notifies reserve crew to deploy reserve buses from the warehouse, if available. The 
system prioritizes first scheduled routes, and then special routes with highest demand. 

2.4.4 Protocol 4: Route changes 

For planned route changes, such as for construction, new schedules are uploaded to the bus at the 
warehouse at night. Signs are posted at affected stop locations directing passengers to the new stops. 

In case of emergency changes, server administrators use the master machines interface to input new 
routes and send them to affected buses. Passengers on board learn of changes via the bus intercom. 

All routing changes are posted on the MBTA website and Twitter page. 

3 Passenger Feedback 

We collect customer feedback using the MBTA Twitter account run by a system administrator. Twitter 
is preferred over an application because it comes with a ready-to-use interface that is already widespread, 
whereas an application needs to be deployed. In addition, passengers from low-income households may not 
own a smartphone for using an application. On the other hand, Twitter is available on the Web and can be 
accessed from public computers. 

4 Discussion 

4.1 Use Cases 

The following are some example use cases of MassRTTC: 

• Normal operation. During normal operation, the system continues monitoring the data and checking 
for high demand, route unavailability, and unexpected routes. 

• High demand. Our system detects high demand by counting passengers. However, apparent high 
demand can result from either failures of supply-side control or actually high demand, and MassRTTC 
distinguishes between the two by choosing when to hold buses and when to add reserve vehicles (section 
2.3.2). 

4



5 

• Road closures. In the event that construction makes a route unviable, an alternate route is selected 
as described in section 2.4.4. 

• Complaints. The server stores the buses’ control points service for decades, allowing system admin-
istrators to investigate reliability complaints. The server stores the passenger counts for all buses that 
report loads close to or exceeding the target, allowing system administrators to investigate passenger 
comfort complaints. 

4.2 Scalability 

The server architecture allows easy recovery in the event of a machine failure. Data is sent over the 
network sparingly, with less than 20 percent used. Physical limits on the capacity of a city makes added load 
on the server less concerning. The amount of data stored is also relatively small. Thus, while our system 
was not designed to scale, we can easily scale to a city with 5x more buses, with the same server and network 
capabilities. 

4.3 Security 

Our system addresses some security concerns. Sensitive data such CharlieCard IDs and payment data 
is not sent over the network. Video frames, which can have identifying information, are not stored on the 
servers. However, video frames are still sent over the network and can be intercepted. 

Conclusion 

Bus reliability and passenger comfort are paramount in a customer-driven system like the MBTA bus 
network. MassRTTC is a integrated real-time control system for the MBTA bus network that is designed to 
provide frequent service, decrease headway variability, and maintain passenger comfort. 

MassRTTC collects data on service frequency, route coverage, passenger load, and network value from 
MBTA buses, and uses the data to evaluate whether it is meeting MBTAs service targets for reliability, 
coverage, and comfort. It can handle cases of high demand, route unavailability, and other unexpected 
events. Our system can scale to 5 times bigger bus networks with the same network and server resources. 
Such a system is crucial for maintaining high quality bus service. 

References 

[1] J. B. Gordon, Intermodal Passenger Flows on Londons Public Transport Network: Automated Inference 
of Full Passenger Journeys Using Fare-Transaction and Vehicle-Location Data, M.S.T. and M.C.P. 
thesis, Department of Civil and Environmental Engineering and Department of Urban Studies and 
Planning, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2012. 

[2] G. E. Sanchez-Martinez, H. N. Koutsopoulos, and N. H. M. Wilson, Real-time holding control for high-
frequency transit with dynamics, Transportation Research Part B: Methodological, vol 83, pp. 1-19, 
January 2016. 

[3] J. G. Strathman, T. J. Kimpel, and S. Callas, Headway Deviation Effects on Bus Passenger Loads: 
Analysis of Tri-Mets Archived AVL-APC Data, Final Research Report for Tri-Met, 2003. 

[4] Y. Xuan, J. Argote, and C. F. Daganzo, A Dynamic Holding Strategy to Improve Bus Schedule Relia-
bility and Commercial Speed, unpublished, 2016. 

5



MIT OpenCourseWare 
https://ocw.mit.edu 

6.033 Computer System Engineering 
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

6

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover2.pdf
	Blank Page




