
 

 

  

6.033 Spring 2018
Lecture #18 

• Distributed transactions
• Multi-site atomicity
• Two-phase commit

6.033 | spring 2018 | Katrina LaCurts 
1



  
 

  
  

    

 

    
 

    

  

goal: build reliable systems from unreliable components 
the abstraction that makes that easier is 

transactions, which provide atomicity and 
isolation, while not hindering performance 

shadow copies (simple, poor 
performance) or logs (better atomicity 

performance, a bit more complex) 

two-phase locking isolation 

eventually, we also want transaction-based systems to 
be distributed: to run across multiple machines 

6.033 | spring 2018 | Katrina LaCurts 
2



  

client coordinator A-M server 

begin 

ok 

A-amount 

ok 

B+amount 

ok 

commit 

ok 

6.033 | spring 2018 | Katrina LaCurts 
3



  

client coordinator A-M server N-Z server 

begin 

ok 

A-amount 

ok 

commit 

ok 

Z+amount 

ok 

6.033 | spring 2018 | Katrina LaCurts 
4



    

  

client coordinator A-M server N-Z server 

begin 

ok 

A-amount 

ok 

commit 

Z+amount 

ok 

X 

problem: one server committed, the other did not 

6.033 | spring 2018 | Katrina LaCurts 
5



    
  

    

    
   

  

goal: develop a protocol that can 
provide multi-site atomicity in the 

face of all sorts of failures 
(message loss, message reordering, worker 

failure, coordinator failure) 

message failures solved with
reliable transport protocol

(sequence numbers + ACKs) 

6.033 | spring 2018 | Katrina LaCurts 
6



  
 

 

    

  

client coordinator A-M server N-Z server 

commit 

ok 

ok 

assume all parts of the 
transactions prior to

commit have happened

prepare 

prepare 

commit 

commit 

two-phase commit: nodes agree that 
they’re ready to commit before committing 

6.033 | spring 2018 | Katrina LaCurts 
7



 

  

client coordinator A-M server N-Z server 

commit 
prepare 

ok 

prepare 

X 
prepare 

timeout; resend 

failure: lost prepare 

6.033 | spring 2018 | Katrina LaCurts 
8



  

  

client coordinator A-M server N-Z server 

commit 
ok 

prepare 

prepare
X 

timeout; resend 
prepare 

thanks to sequence 
numbers, A-M will ACK 
this message but not 

re-process it 

failure: lost ACK for prepare 

6.033 | spring 2018 | Katrina LaCurts 
9



   

  

client coordinator A-M server N-Z server 

commit 
ok 

prepare 

prepare 

failure: worker failure while preparing 

6.033 | spring 2018 | Katrina LaCurts 
10



   

  

client coordinator A-M server 

commit 

N-Z server 

abort 

prepare 

prepare 

! 

abort 

ok 

failure: worker failure during prepare 

6.033 | spring 2018 | Katrina LaCurts 
11



 
  

client coordinator A-M server N-Z server 

commit 

ok 

prepare 

prepare 

commit 

ok 

commit 

timeout; resend 

commit 

tx? 
X 

failure: lost commit message
6.033 | spring 2018 | Katrina LaCurts 

12



  
  

client coordinator A-M server N-Z server 

commit 

ok 

prepare 

prepare 

commit 

ok 

commit 

timeout; resend 

commit 

X 

failure: lost ACK for commit message
6.033 | spring 2018 | Katrina LaCurts 

13



   
  

client coordinator A-M server N-Z server 

commit 

ok 

prepare 

prepare 

ok 

commit 

commit 

failure: worker failure during commit 
6.033 | spring 2018 | Katrina LaCurts 

14



   
  

client coordinator A-M server 

commit 

ok 

prepare 

prepare 

ok 

commit 

commit 

N-Z server! 

failure: worker failure during commit 
6.033 | spring 2018 | Katrina LaCurts 

15



if workers fail after the commit point, we 
cannot abort the transaction.  workers 
must be able to recover into a prepared 

state

workers write PREPARE records once prepared.  the
recovery process — reading through the log — will 
indicate which transactions are prepared but not 

committed

6.033 | spring 2018 | Katrina LaCurts 
16



client coordinator A-M server

commit

ok

prepare

prepare

ok

commit

failure: worker failure during commit

commit

N-Z server!

6.033 | spring 2018 | Katrina LaCurts 
17



client coordinator A-M server

commit

ok

prepare

prepare

ok

commit

failure: worker failure during commit

commit

N-Z server

tx?
commit

6.033 | spring 2018 | Katrina LaCurts 
18



client coordinator A-M server

commit

N-Z server

prepare

ok

failure: coordinator failure during prepare

!

6.033 | spring 2018 | Katrina LaCurts 
19



client coordinator A-M server

commit

N-Z server

prepare

ok

failure: coordinator failure during prepare

abort

abort

coordinator recovers

6.033 | spring 2018 | Katrina LaCurts 
20



client A-M server

commit

ok

N-Z server

prepare

prepare

commit

ok

failure: coordinator failure during commit

coordinator!

6.033 | spring 2018 | Katrina LaCurts 
21



client A-M server

commit

ok

N-Z server

prepare

prepare

commit

ok

failure: coordinator failure during commit

coordinator

coordinator recovers
commit
commit

6.033 | spring 2018 | Katrina LaCurts 
22



problem: in our example, when workers 
fail, some of the data (e.g., accounts A-M) 

is completely unavailable

6.033 | spring 2018 | Katrina LaCurts 
23



solution: replicate data

but! how will we keep multiple copies of 
the data consistent?  what type of 

consistency do we want?

6.033 | spring 2018 | Katrina LaCurts 
24



• Two-phase commit allows us to achieve multi-site
atomicity: transactions remain atomic even when they
require communication with multiple machine.

• In two-phase commit, failures prior to the commit point
can be aborted.  If workers (or the coordinator) fail after
the commit point, they recover into the prepared state,
and complete the transaction.

• Our remaining issue deals with availability and replication:
we will replicate data across sites to improve availability,
but must deal with keeping multiple copies of the data
consistent.

6.033 | spring 2018 | Katrina LaCurts 
25



 
 

 

            

MIT OpenCourseWare 
https://ocw.mit.edu 

6.033 Computer System Engineering
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

26

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	cover_h.pdf
	Blank Page


	Blank Page
	Blank Page



