
6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 5.1

Slide 5.1.1
The learning algorithm for DNF that we saw last time is a bit complicated and can be inefficient.
It's also not clear that we're making good decisions about which attributes to add to a rule,
especially when there's noise.

So now we're going to look at an algorithm for learning decision trees. We'll be changing our
hypothesis class (sort of), our bias, and our algorithm. We'll continue to assume, for now, that the
input features and the output class are boolean. We'll see later that this algorithm can be applied
much more broadly.

Slide 5.1.2
Our hypothesis class is going to be decision trees. A decision tree is a tree (big surprise!). At each
internal (non-leaf) node, there is the name of a feature. There are two arcs coming out of each node,
labeled 0 and 1, standing for the two possible values that the feature can take on.

Leaf nodes are labeled with decisions, or outputs. Since our y's are Boolean, the leaves are labeled
with 0 or 1.

Slide 5.1.3
Trees represent Boolean functions from x's (vectors of feature values) to Booleans. To compute the
output for a given input vector xi, we start at the root of the tree. We look at the feature there, let's
say it's feature j, and then look to see what the value of xi

j is. Then we go down the arc

corresponding to that value. If we arrive at another internal node, we look up that feature value,
follow the correct arc, and so on. When we arrive at a leaf node, we take the label we find there and
generate that as an output.

So, in this example, input [0 1 1 0] would generate an output of 0 (because the third element of the
input has value 1 and the first has value 0, which takes to a leaf labeled 0).

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.4
Decision trees are a way of writing down Boolean expressions. To convert a tree into an expression,
you can make each branch of the tree with a 1 at the leaf node into a conjunction, describing the
condition that had to hold of the input in order for you to have gotten to that leaf of the tree. Then,
you take this collection of expressions (one for each leaf) and disjoin them.

So, our example tree describes the boolean function not f3 and f2 or f3 and f1 and not f2.

Slide 5.1.5
If we allow negations of primitive features in DNF, then both DNF and decision trees are capable of
representing any boolean function. Why, then, should we bother to change representations in this
way? The answer is that we're going to define our bias in a way that is natural for trees, and use an
algorithm that is tailored to learning functions in the tree representation.

Slide 5.1.6
Application of Ockham's razor will lead us to prefer trees that are small, measured by the number of
nodes. As before, it will be computationally intractable to find the minimum-sized tree that satisfies
our error criteria. So, as before, we will be greedy, growing the tree in a way that seems like it will
make it best on each step.

We'll consider a couple of methods for making sure that our resulting trees are not too large, so we
can guard against overfitting.

Slide 5.1.7
It's interesting to see that a bias for small trees is different from a bias for small DNF expressions.
Consider this tree. It corresponds to a very complex function in DNF.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.8
But here's a case with a very simple DNF expression that requires a large tree to represent it. There's
no particular reason to prefer trees over DNF or DNF over trees as a hypothesis class. But the tree-
growing algorithm is simple and elegant, so we'll study it.

Slide 5.1.9
The idea of learning decision trees and the algorithm for doing so was, interestingly, developed
independently by researchers in statistics and researchers in AI at about the same time around 1980.

Slide 5.1.10
We will build the tree from the top down. Here is pseudocode for the algorithm. It will take as input
a data set, and return a tree.

Slide 5.1.11
We first test to see if all the data elements have the same y value. If so, we simply make a leaf node
with that y value and we're done. This is the base case of our recursive algorithm.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.12
If we have a mixture of different y values, we choose a feature to use to make a new internal node.
Then we divide the data into two sets, those for which the value of the feature is 0 and those for
which the value is 1. Finally, we call the algorithm recursively on each of these data sets. We use the
selected feature and the two recursively created subtrees to build our new internal node.

Slide 5.1.13
So, how should we choose a feature to split the data? Our goal, in building this tree, is to separate
the negative instances from the positive instances with the fewest possible tests. So, for instance, if
there's a feature we could pick that has value 0 for all the positive instances and 1 for all the negative
instances, then we'd be delighted, because that would be the last split we'd have to make. On the
other hand, a feature that divides the data into two groups that have the same proportion of positive
and negative instances as we started with wouldn't seem to have helped much.

Slide 5.1.14
In this example, it looks like the split based on f7 will be more helpful. To formalize that intuition,

we need to develop a measure of the degree of uniformity of the subsets of the data we'd get by
splitting on a feature.

Slide 5.1.15
We'll start by looking at a standard measure of disorder, used in physics and information theory,
called entropy. We'll just consider it in the binary case, for now. Let p be the proportion of positive
examples in a data set (that is, the number of positive examples divided by the total number of
examples). Then the entropy of that data set is

- p log2 p - (1 - p) log2 (1 - p)

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.16
Here's a plot of the entropy as a function of p. When p is 0 or 1, then the entropy is 0. We have to
be a little bit careful here. When p is 1, then 1 log 1 is clearly 0. But what about when p is 0? Log
0 is negative infinity. But 0 wins the battle, so 0 log 0 is also 0.

So, when all the elements of the set have the same value, either 0 or 1, then the entropy is 0. There
is no disorder (unlike in my office!).

The entropy function is maximized when p = 0.5. When p is one half, the set is as disordered as it
can be. There's no basis for guessing what the answer might be.

Slide 5.1.17
When we split the data on feature j, we get two data sets. We'll call the set of examples for which
feature j has value 1 D+

j and those for which j has value 0 D-
j.

Slide 5.1.18
We can compute the entropy for each of these subsets. For some crazy reason, people usually use
the letter H to stand for entropy. We'll follow suit.

Slide 5.1.19
Now, we have to figure out how to combine these two entropy values into a measure of how good
splitting on feature j is. We could just add them together, or average them. But what if have this
situation, in which there's one positive example in one data set and 100 each of positive and negative
examples in the other? It doesn't really seem like we've done much good with this split, but if we
averaged the entropies, we'd get a value of 1/4.

So, to keep things fair, we'll use a weighted average to combine the entropies of the two sets. Let pj

be the proportion of examples in the data set D for which feature j has value 1. We'll compute a
weighted average entropy for splitting on feature j as AE(j) = pj H(D+

j) + (1 - pj)H(D-
j)

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.20
So, in this example, we can see that the split on f7 is much more useful, as reflected in the average

entropy of its children.

Slide 5.1.21
Going back to our algorithm, then, we'll pick the feature at every step that minimizes the weighted
average entropy of the children.

Slide 5.1.22
As usual, when there is noise in the data, it's easy to overfit. We could conceivably grow the tree
down to the point where there's a single data point in each leaf node. (Or maybe not: in fact, if have
two data points with the same x values but different y values, our current algorithm will never
terminate, which is certainly a problem). So, at the very least, we have to include a test to be sure
that there's a split that makes both of the data subsets non-empty. If there is not, we have no choice
but to stop and make a leaf node.

Slide 5.1.23
What should we do if we have to stop and make a leaf node when the data points at that node have
different y values? Choosing the majority y value is the best strategy. If there are equal numbers of
positive and negative points here, then you can just pick a y arbitrarily.

Image removed due to
copyright restrictions.

Image removed due to
copyright restrictions.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.24
But growing the tree as far down as we can will often result in overfitting.

Slide 5.1.25
The simplest solution is to change the test on the base case to be a threshold on the entropy. If the
entropy is below some value epsilon, we decide that this leaf is close enough to pure.

Slide 5.1.26
Another simple solution is to have a threshold on the size of your leaves; if the data set at some leaf
has fewer than that number of elements, then don't split it further.

Slide 5.1.27
Another possible method is to only split if the split represents a real improvement. We can compare
the entropy at the current node to the average entropy for the best attribute. If the entropy is not
significantly decreased, then we could just give up.

Image removed due to
copyright restrictions .

Image removed due to
copyright restrictions.

Image removed due to
copyright restrictions.

Image removed due to
copyright restrictions.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.28
Let's see how our tree-learning algorithm behaves on the example we used to demonstrate the DNF-
learning algorithm. Our data set has a starting entropy of .92. Then, we can compute, for each
feature, what the average entropy of the children would be if we were to split on that feature.

In this case, the best feature to split on is f3.

Slide 5.1.29
So, if we make that split, we have these two data sets. The one on the left has only a single output
(in fact, only a single point).

Slide 5.1.30
So we make it into a leaf with output 0 and consider splitting the data set in the right child.

Slide 5.1.31
The average entropies of the possible splits are shown here. Features 1 and 2 are equally useful, and
feature 4 is basically no help at all.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.32
So, we decide, arbitrarily, to split on feature 1, yielding these sub-problems. All of the examples in
the right-hand child have the same output.

Slide 5.1.33
So we can turn it into a leaf with output 1.

In the left child, feature 2 will be the most useful.

Slide 5.1.34
So we split on it, and now both children are homogeneous (all data points have the same output).

Slide 5.1.35
So we make the leaves and we're done!

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.36
One class of functions that often haunts us in machine learning are those that are based on the
"exclusive OR". Exclusive OR is the two-input boolean function that has value 1 if one input has
value 1 and the other has value 0. If both inputs are 1 or both are 0, then the output is 0. This
function is hard to deal with, because neither input feature is, by itself, detectably related to the
output. So, local methods that try to add one feature at a time can be easily misled by xor.

Slide 5.1.37
Let's look at a somewhat tricky data set. The data set has entropy .92. Furthermore, no matter what
attribute we split on, the average entropy is .92. If we were using the stopping criterion that says we
should stop when there is no split that improves the average entropy, we'd stop now.

Slide 5.1.38
But let's go ahead and split on feature 1. Now, if we look at the left-hand data set, we'll see that
feature 2 will have an average entropy of 0.

Slide 5.1.39
So we split on it, and get homogenous children,

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.40
Which we can replace with leaves.

Now, it's also easy to see that feature 2 will again be useful here,

Slide 5.1.41
And we go straight to leaves on this side.

So we can see that, although no single feature could reduce the average entropy of the child data
sets, features 1 and 2 were useful in combination.

Slide 5.1.42
Most real decision-tree building systems avoid this problem by building the tree down significantly
deeper than will probably be useful (using something like an entropy cut-off or even getting down to
a single data-point per leaf). Then, they prune the tree, using cross-validation to decide what an
appropriate pruning depth is.

Slide 5.1.43
We ran a simple version of the tree-learning program on the congressional voting database. Instead
of pruning, it has a parameter on the minimum leaf size. If it reaches a node with fewer than that
number of examples, it stops and makes a leaf with the majority output.

Here's the tree we get when the minimum leaf size of 20. This problem is pretty easy, so this small
tree works very well. If we grow bigger trees, we don't get any real increase in accuracy.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.1.44
Because decision tree learning is easy to implement and relatively computationally efficient, and
especially because the hypotheses are easily understandable by humans, this technology is very
widely used.

The field of data mining is the application of learning algorithms to problems of interest in many
industries. Decision trees is one of the principle methods used in data mining.

In the next few sections, we'll see how to broaden the applicability of this and other algorithms to
domains with much richer kinds of inputs and outputs.

6.034 Notes: Section 5.2

Slide 5.2.1
Let's look at one more algorithm, which is called naive Bayes. It's named after the Reverend
Thomas Bayes, who developed a very important theory of probabilistic reasoning.

Slide 5.2.2
It's widely used in applications with lots of features. It was derived using a somewhat different set of
justifications than the ones we've given you. We'll start by going through the algorithm, and at the
end I'll go through its probabilistic background. Don't worry if you don't follow it exactly. It's just
motivational, but it should make sense to anyone who has studied basic probability.

Image of Rev. Thomas
Bayes removed due to
copyright restrictions.

Image of Rev. Thomas
Bayes removed due to
copyright restrictions.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.3
Let's start by looking at an example data set. We're going to try to characterize, for each feature
individually, how it is related to the class of an example.

First, we look at the positive examples, and count up what fraction of them have feature 1 on and
what fraction have feature 1 off. We'll call these fractions R1(1, 1) and R1(0,1). We can see here that

most positive examples have this feature 1 off.

Slide 5.2.4
Now, we look at the negative examples, and figure out what fraction of negative examples have
feature 1 on and what fraction have it off. We call these fractions R1(1, 0) and R1(0, 0). Here we see

that all negative examples have this feature on.

Slide 5.2.5
We can compute these values, as shown here, for each of the other features, as well.

Slide 5.2.6
These R values actually represent our hypothesis in a way we'll see more clearly later. But that
means that, given a new input x, we can use the R values to compute an output value Y.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.7
Imagine we get a new x = <0, 0, 1, 1>. We start out by computing a "score" for this example being a
positive example. We do that by multiplying the positive R values, one for each feature. So, our x
has feature 1 equal to 0, so we use R1 of 0, 1. It has feature 2 equal to zero, so we use R2 of 0, 1. It

has feature 3 equal to 1, so we use R3 of 1, 1. And so on. I've shown the feature values in blue to

make it clear which arguments to the R functions they're responsible for. Similarly, I've shown the
1's that come from the fact that we're computing the positive score in green.

Each of the factors in the score represents the degree to which this feature tends to have this value in
positive examples. Multiplied all together, they give us a measure of how likely it is that this
example is positive.

Slide 5.2.8
We can do the same thing to compute a score for x being a negative example. Something pretty
radical happens here, because we have R1 of 0, 0 equal to 0. We've never seen a negative example

with feature 1 off, so we have concluded, essentially, that it's impossible for that to happen. Thus,
because our x has feature 1 equal to 0, we think it's impossible for x to be a negative example.

Slide 5.2.9
Finally, we compare score 1 to score 0, and generate output 1 because score 1 is larger than score 0.

Slide 5.2.10
Here's the learning algorithm written out just a little bit more generally. To compute Rj of 1, 1, we

just count, in our data set, how many examples there have been in which feature j has had value 1
and the output was also 1, and divide that by the total number of samples with output 1.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.11
Now, Rj of 0, 1 is just 1 minus Rj of 1, 1.

Slide 5.2.12
Similarly, Rj of 1, 0 is the number of examples in which feature j had value 1 and the output was 0,

divided the total number of examples with output 0. And Rj of 0, 0 is just 1 minus Rj of 1, 0.

Slide 5.2.13
Now, given a new example, x, let the score for class 1, S(1), be the product, over all j, of Rj of 1,1 if

xj = 1 and Rj of 0, 1 otherwise.

Slide 5.2.14
Similarly, S(0) is the product, over all j, of Rj of 1, 0 if xj = 1 and Rj of 0,0 otherwise.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.15
If S(1) is greater than S(0), then we'll predict that Y = 1, else 0.

Slide 5.2.16
We can run into problems of numerical precision in our calculations if we multiply lots of
probabilities together, because the numbers will rapidly get very small. One standard way to deal
with this is to take logs everywhere. Now, we'll output 1 if the log of the score for 1 is greater than
the log of score 0. And the log of a product is the sum of the logs of the factors.

Slide 5.2.17
In our example, we saw that if we had never seen a feature take value 1 in a positive example, our
estimate for how likely that would be to happen in the future was 0. That seems pretty radical,
especially when we only have had a few examples to learn from. There's a standard hack to fix this
problem, called the "Laplace correction". When counting up events, we add a 1 to the numerator and
a 2 to the denominator.

If we've never seen any positive instances, for example, our R (1,1) values would be 1/2, which
seems sort of reasonable in the absence of any information. And if we see lots and lots of examples,
this 1 and 2 will be washed out, and we'll converge to the same estimate that we would have gotten
without the correction.

There's a beautiful probabilistic justification for what looks like an obvious hack. But, sadly, it's
beyond the scope of this class.

Slide 5.2.18
Here's what happens to our original example if we use the Laplace correction. Notably, R1 of 0, 0 is

now 1/7 instead of 0, which is less dramatic.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.19
And so, when it comes time to make a prediction, the score for answer 0 is no longer 0. We think it's
possible, but unlikely, that this example is negative. So we still predict class 1.

Slide 5.2.20
What's the story of this algorithm in terms of hypothesis space? We've fixed the spaces of
hypotheses to have the form shown here. This is a very restricted form. But it is still a big (infinite,
in fact) hypothesis space, because we have to pick the actual values of the coefficients alphaj and

betaj for all j.

Slide 5.2.21
All of our bias is in the form of the hypothesis. We've restricted it significantly, so we would now
like to choose the alpha's and beta's in such a way as to minimize the error on the training set. For
somewhat subtle technical reasons (ask me and I'll tell you), our choice of the R scores for the
alpha's and beta's doesn't exactly minimize error on the training set. But it usually works pretty well.

The main reason we like this algorithm is that it's easy to train. One pass through the data and we
can compute all the parameters. It's especially useful in things like text categorization, where there
are huge numbers of attributes and we can't possibly look at them many times.

Slide 5.2.22
One possible concern about this algorithm is that it's hard to interpret the hypotheses you get back.
With DNF or decision trees, it's easy for a human to understand what features are playing an
important role, for example.

In naive Bayes, all the features are playing some role in the categorization. You can think of each
one as casting a weighted vote in favor an answer of 1 versus 0. The weight of each feature's vote is
this expression. The absolute value of this weight is a good indication of how important a feature is,
and its sign tells us whether that feature is indicative of output 1 (when it's positive) or output 0
(when it's negative).

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.23
This algorithm makes a fundamental assumption that we can characterize the influence of each
feature on the class independently, and then combine them through multiplication. This assumption
isn't always justified. We'll illustrate this using our old nemesis, exclusive or. Here's the data set we
used before.

Slide 5.2.24
Here are the R values obtained via counting and the Laplace correction. They're all equal to 1/2,
because no feature individually gives information about whether the example is positive or negative.

Slide 5.2.25
Sure enough, when we compute the scores for any new example, we get the same result, giving us
no basis at all for predicting the output.

Slide 5.2.26
Now we show the results of applying naive Bayes to the congressional voting domain. In this case,
we might expect the independence assumption to be reasonably well satisfied (a congressperson
probably doesn't decide on groups of votes together, unless there are deals being made).

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.27
Using cross-validation, we determined that the accuracy of hypotheses generated by naive Bayes
was approximately 0.91. This is not as good as that of decision trees, which had an accuracy of
about 0.95. This result is not too surprising: decision trees can express more complex hypotheses
that consider combinations of attributes.

Slide 5.2.28
This domain is small enough that the efficiency of naive Bayes doesn't really matter. So we would
prefer to use trees or DNF on this problem.

Slide 5.2.29
It's interesting to look at the weights found for the various attributes. Here, I've sorted the attributes
according to magnitude of the weight assigned to them by naive Bayes. The positive ones (colored
black) vote in favor of the output being 1 (republican); the negative ones (colored red) vote against
the the output being 1 (and therefore in favor of democrat).

The results are consistent with the answers we've gotten from the other algorithms. The most
diagnostic single issue seems to be voting on whether physician fees should be frozen; that is a
strong indicator of being a democrat. The strongest indicators of being republican are accepting the
budget, aid to the contras, and support of the mx missile.

Slide 5.2.30
Now we'll look briefly at the probabilistic justification for the algorithm. If you don't follow it, don't
worry. But if you've studied probability before, this ought to provide some useful intuition.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.31
One way to think about the problem of deciding what class a new item belongs to is to think of the
features and the output as random variables. If we knew Pr(Y = 1 | f1 ... fn), then when we got a new

example, we could compute the probability that it had a Y value of 1, and generate the answer 1 if
the probability was over 0.5. So, we're going to concentrate on coming up with a way to estimate
this probability.

Slide 5.2.32
Bayes' rule gives us a way to take the conditional probability Pr(A|B) and express it in terms of Pr(B|
A) and the marginals Pr(A) and Pr(B).

Slide 5.2.33
Applying it to our problem, we get Pr(Y = 1 | f1 ... fn) = Pr(f1 .. fn | Y = 1) Pr(Y = 1) / Pr(f1 .. fn)

Slide 5.2.34
Since the denominator is independent of Y, we can ignore it in figuring out whether Pr(Y = 1 | f1 ...

fn) is greater than Pr(Y = 0 | f1 ... fn).

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.35
The term Pr(Y = 1) is often called the prior. It's a way to build into our decision-making a previous
belief about the proportion of things that are positive. For now, we'll just assume that it's 0.5 for both
positive and negative classes, and ignore it.

Slide 5.2.36
This will allow us to concentrate on Pr(f1 ... fn | Y = 1).

Slide 5.2.37
The algorithm is called naive Bayes because it makes a big assumption, which is that it can be
broken down into a product like this. A probabilist would say that we are assuming that the features
are conditionally independent given the class.

So, we're assuming that Pr(f1 .. fn | Y = 1) is the product of all the individual conditional

probabilities, Pr(fj | Y = 1).

Slide 5.2.38
Here is our same learning algorithm (without the Laplace correction, for simplicity), expressed in
probabilistic terms.

We can think of the R values as estimates of the underlying conditional probabilities, based on the
training set as a statistical sample drawn from those distributions.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 5.2.39
And here's the prediction algorithm, just written out using probabilistic notation. The S is also an
estimated probability. So we predict output 1 just when we think it's more likely that our new x
would have come from class 1 than from class 0.

Now, we'll move on to considering the situation in which the inputs and outputs of the learning
process can be real-valued.

