

Lecture 16: Register Allocation

Storing values between def and use

- · Program computes with values
 - value definitions (where computed)
 - value uses (where read to compute new values)
- · Values must be stored between def and use
 - First Option
 - store each value in memory at definition
 - retrieve from memory at each use
 - Second Option
 - store each value in register at definition
 - retrieve value from register at each use

Saman Amarasinghe

6.035 ©MIT Fall 1999

Register Allocation

- Deciding which values to store in limited number of registers
- Register allocation has a direct impact on performance
 - Affects almost every statement of the program
 - Eliminates expensive memory instructions
 - # of instructions goes down due to direct manipulation of registers (no need for load and store instructions)
 - Probably is the optimization with the most impact!

Saman Amarasinghe

6.035 ©MIT Fall 1999

What can be put in a register?

- Values stored in compiler-generated temps
- Language-level values
 - Values stored in local scalar variables
 - Big constants
 - Values stored in array elements and object fields
 - Issue: alias analysis
- Register set depends on the data-type
 - floating-point values in floating point registers
 - integer and pointer values in integer registers

Saman Amarasingh

6.035 ©MIT Fall 1

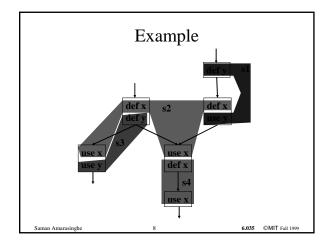
Issues

- Fewer instructions when using registers
 - Additional instructions when using memory accesses
- Registers are faster than memory
 - wider gap in faster, newer processors
 - Factor of about 4 bandwidth, factor of about 3 latency
 - Could be bigger if program characteristics were different
- But only a small number of registers available
 - Usually 16 integer and 16 floating-point registers
 - Some of those registers have fixed users (ex: rsp, rbp)

Saman Amarasinghe 5 6.035 ©MIT Fall 1995

Web-Based Register Allocation

- Determine live ranges for each value (web)
- Determine overlapping ranges (interference)
- Compute the benefit of keeping each web in a register (spill cost)
- Decide which webs get a register (allocation)
- Split webs if needed (spilling and splitting)
- Assign hard registers to webs (assignment)
- Generate code including spills (code gen)


Saman Amarasinghe

6.035 ©MIT Fall 1999

Webs

- Starting Point: def-use chains (DU chains)
 - Connects definition to all reachable uses
- Conditions for putting defs and uses into same web
 - Def and all reachable uses must be in same web
 - All defs that reach same use must be in same web
- Use a union-find algorithm

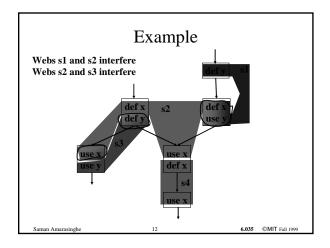
Saman Amarasinghe 7 6.035 ©MIT Fall 1999

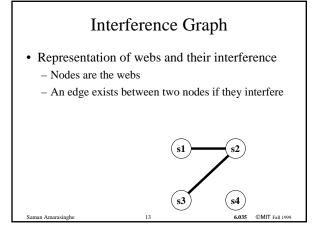
Webs

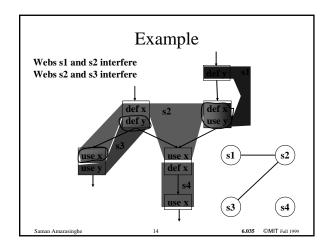
- Web is unit of register allocation
- If web allocated to a given register R
 - All definitions computed into R
 - All uses read from R
- If web allocated to a memory location M
 - All definitions computed into M
 - All uses read from M

Saman Amarasinghe 9 6.035 ©MIT Fa

Convex Sets and Live Ranges

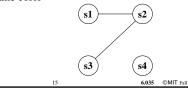

- Concept of convex set
- A set S is convex if
 - A, B in S and C is on a path from A to B implies
 - C is in S
- Concept of live range of a web
 - Minimal convex set of instructions that includes all defs and uses in web
 - Intuitively, region in which web's value is live


Saman Amarasinghe 10 6.035 ©MIT Fall 1999


Interference

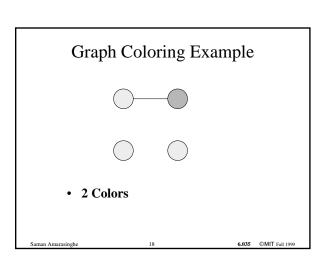
- Two webs interfere if their live ranges overlap (have a nonemtpy intersection)
- If two webs interfere, values must be stored in different registers or memory locations
- If two webs do not interfere, can store values in same register or memory location

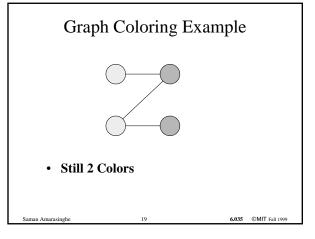
Saman Amarasinghe 11 6.035 ©MIT Fall 1999

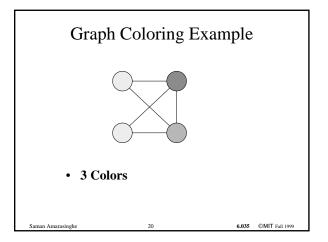


Register Allocation Using Graph Coloring

- Each web is allocated a register
 - each node gets a register (color)
- If two webs interfere they cannot use the same register
 - if two nodes have an edge between them, they cannot have the same color



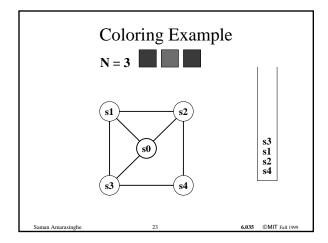

Graph Coloring

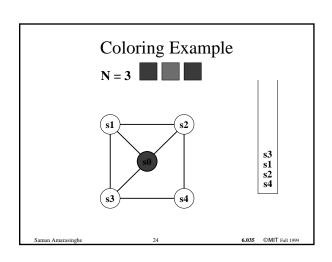

- Assign a color to each node in graph
- Two nodes connected to same edge must have different colors
- Classic problem in graph theory
- NP complete
 - But good heuristics exist for register allocation

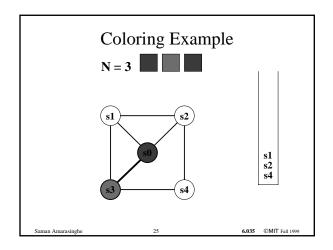
Saman Amarasinghe 16 6.035 ©MIT Fall 1999

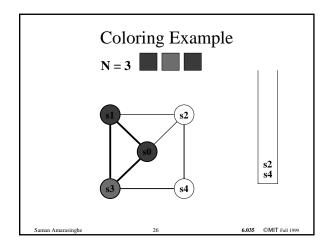
Graph Coloring Example One of the state of

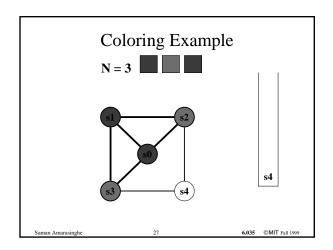
Heuristics for Register Coloring

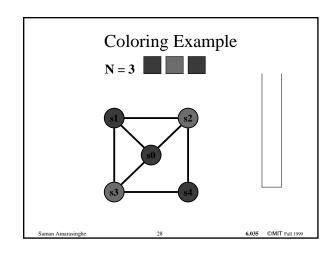

- Coloring a graph with N colors
- If degree < N (degree of a node = # of edges)
 - Node can always be colored
 - After coloring the rest of the nodes, you'll have at least one color left to color the current node
- If degree >= N
 - still may be colorable with N colors

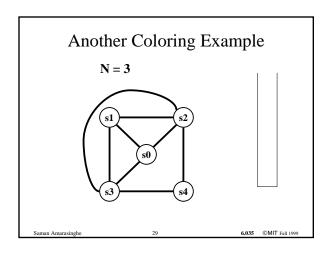

Saman Amarasinghe 21 6.035 ©MIT Fall 1999

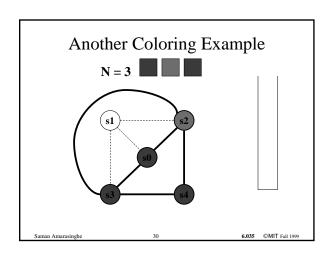

Heuristics for Register Coloring


- $\bullet \ \ Remove \ nodes \ that \ have \ degree < N$
 - push the removed nodes onto a stack
- When all the nodes have degree $\geq = N$
 - Find a node to spill (no color for that node)
 - Remove that node
- When empty, start to color
 - pop a node from stack back
 - Assign it a color that is different from its connected nodes (since degree < N, a color should exist)


Saman Amarasinghe 22 6.035 ©MIT Fall 1999







What Now?

- Option 1
 - Pick a web and allocate value in memory
 - All defs go to memory, all uses come from memory
- Option 2
 - Split the web into multiple webs
- In either case, will retry the coloring

Saman Amarasinghe 31

Which web to pick?

- One with interference degree >= N
- One with minimal spill cost (cost of placing value in memory rather than in register)
- · What is spill cost?
 - Cost of extra load and store instructions

nan Amarasinghe 32

Ideal and Useful Spill Costs

6.035 ©MIT Fall 199

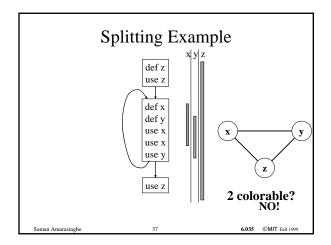
- Ideal spill cost dynamic cost of extra load and store instructions. Can't expect to compute this.
 - Don't know which way branches resolve
 - Don't know how many times loops execute
 - Actual cost may be different for different executions
- Solution: Use a static approximation
 - profiling can give instruction execution frequencies
 - or use heuristics based on structure of control flow graph

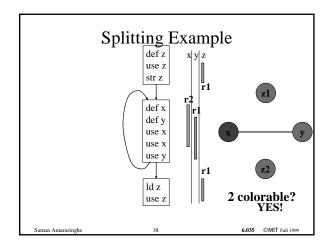
Saman Amarasinghe 33 6.035 ©MIT Fall 199

One Way to Compute Spill Cost

6.035 ©MIT Fall 199

- Goal: give priority to values used in loops
- So assume loops execute 10 or 100 times
- Spill cost =
 - sum over all def sites of cost of a store instruction times 10 to the loop nesting depth power, plus
 - sum over all use sites of cost of a load instruction times 10 to the loop nesting depth power
- Choose the web with the lowest spill cost


Saman Amarasinghe 34 6.035 ©MIT Fall 1999


Spill Cost Example Spill Cost For x storeCost+loadCost Spill Cost For y 9*storeCost+9*loadCost With 1 Register, Which Variable Gets Spilled?

Splitting Rather Than Spilling

- Split the web
 - Split a web into multiple webs so that there will be less interference in the interference graph making it N-colorable
 - Spill the value to memory and load it back at the points where the web is split

Saman Amarasinghe 36 6.035 ©MIT Fall 1999

Splitting Heuristic

- Identify a program point where the graph is not R-colorable (point where # of webs > N)
 - Pick a web that is not used for the largest enclosing block around that point of the program
 - Split that web at the corresponding edge
 - Redo the interference graph
 - Try to re-color the graph

Saman Amarasinghe 39 6.035 ©MIT Fall 1999

Cost and benefit of splitting

- Cost of splitting a node
 - Proportion to number of times splitted edge has to be crossed dynamically
 - Estimate by its loop nesting
- Benefit
 - Increase colorability of the nodes the splitted web interferes with
 - Can approximate by its degree in the interference graph
- Greedy heuristic
 - pick the live-range with the highest benefit-to-cost ration to spill

nan Amarasinghe 40 6.035 ©MIT Fall 1999

Further Optimizations

- · Register coalescing
- Register targeting (pre-coloring)
- · Presplitting of webs
- Interprocedural register allocation

Saman Amarasinghe 41 6.035 ©MIT Fall 1999

Register Coalescing

- Find register copy instructions sj = si
- If sj and si do not interfere, combine their webs
- Pros
 - similar to copy propagation
 - reduce the number of instructions
- Cons
 - may increase the degree of the combined node
 - a colorable graph may become non-colorable

Saman Amarasinghe 42 6.035 ©MIT Fall 1999

Register Targeting (pre-coloring)

- Some variables need to be in special registers at a given time
 - fist 6 arguments to a function
 - return value
- Pre-color those webs and bind them to the right register
- Will eliminate unnecessary copy instructions

Saman Amarasinghe

42

6.035 ©MIT Fall 1999

Pre-splitting of the webs

- Some live ranges have very large "dead" regions.
 - Large region where the variable is unused
- Break-up the live ranges
 - need to pay a small cost in spilling
 - but the graph will be very easy to color
- Can find strategic locations to break-up
 - at a call site (need to spill anyway)
 - around a large loop nest (reserve registers for values used in the loop)

Saman Amarasinghe

6.035 ©MIT Fall 1999

Interprocedural register allocation

- saving registers across procedure boundaries is expensive
 - especially for programs with many small functions
- Calling convention is too general and inefficient
- Customize calling convention per function by doing interprocedural register allocation

Saman Amarasinghe

45

6.035 ©MIT Fall 1999

Summary

- Register Allocation
 - Store values in registers between def and use
 - Can improve performance substantially
- Key concepts
 - Webs
 - Interference graphs
 - Colorability
 - Splitting

Saman Amarasinghe

6.035 ©MIT Fall 19