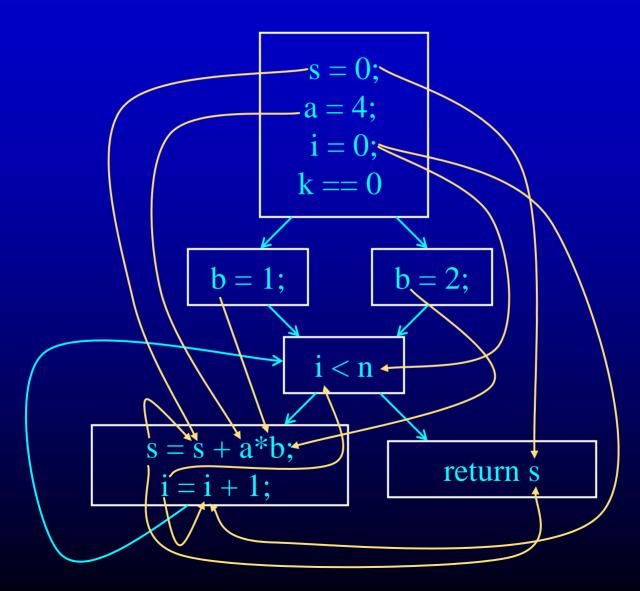
MIT 6.035 Introduction to Dataflow Analysis

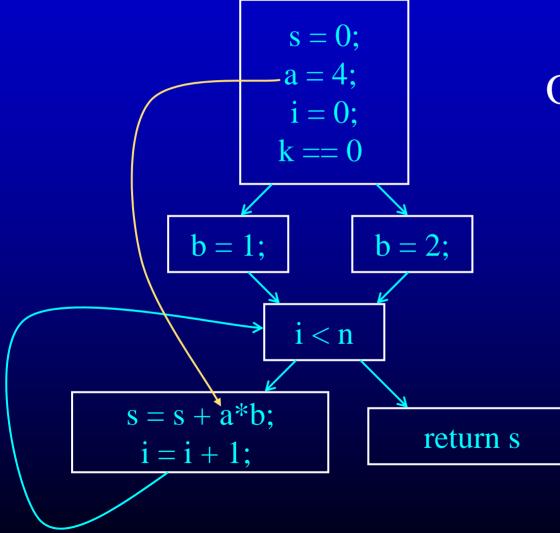
Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology


Dataflow Analysis

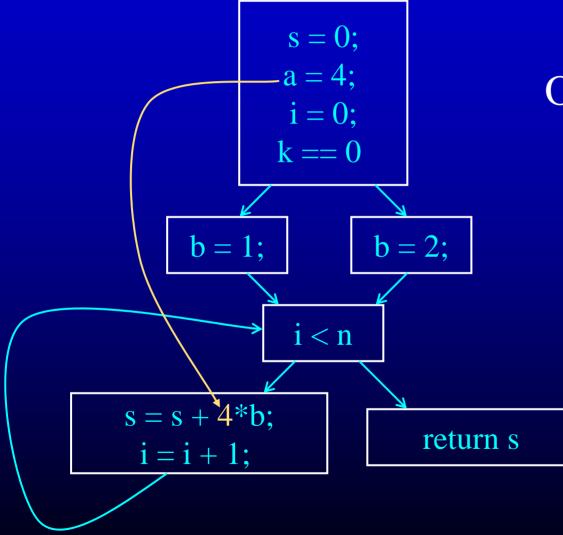
- Used to determine properties of program that involve multiple basic blocks
- Typically used to enable transformations
 - common sub-expression elimination
 - constant and copy propagation
 - dead code elimination
- Analysis and transformation often come in pairs

Reaching Definitions

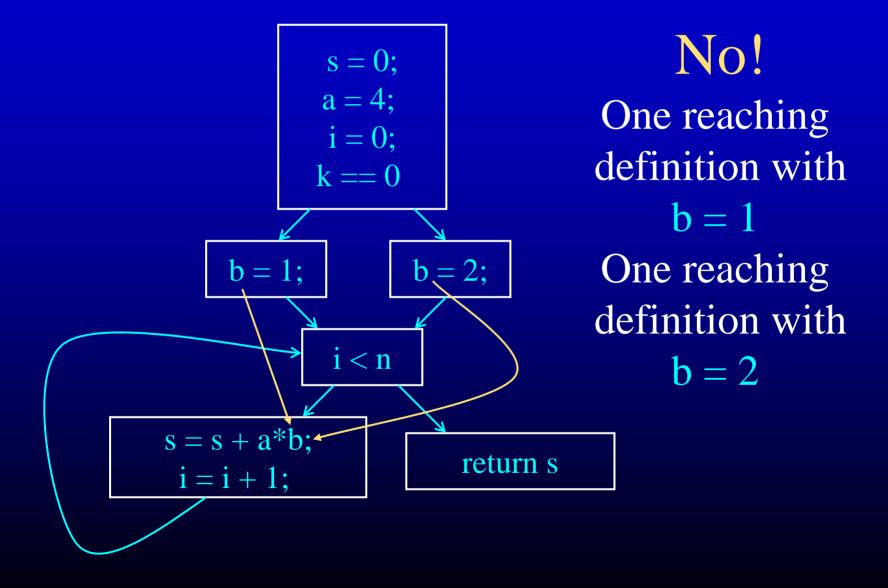
- Concept of definition and use
 - -a = x + y
 - is a definition of a
 - is a use of x and y
- A definition reaches a use if
 - value written by definition
 - may be read by use

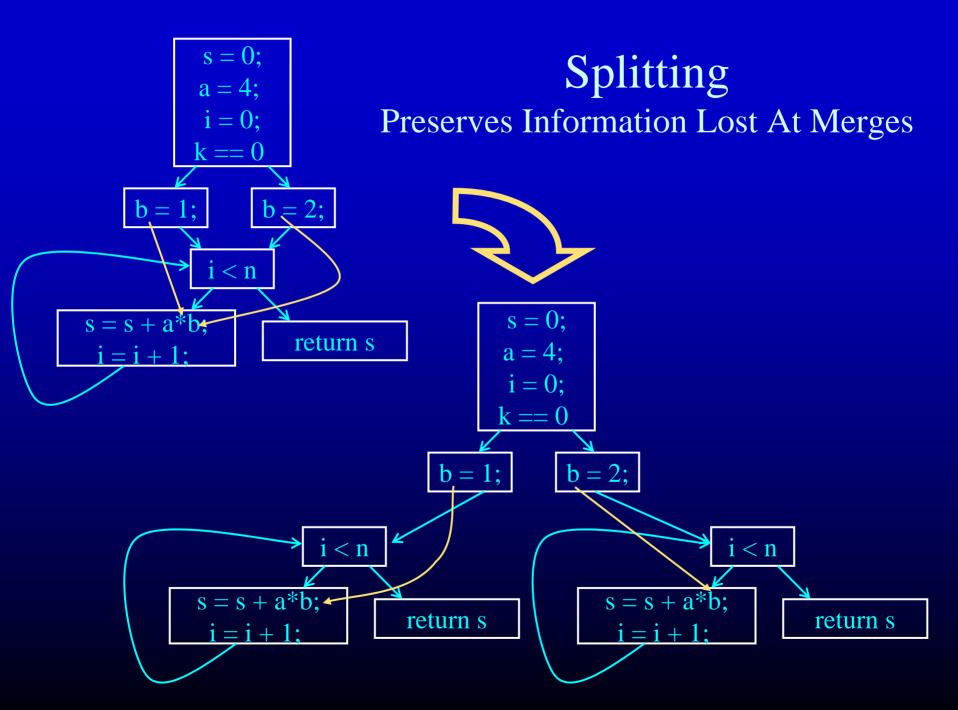

Reaching Definitions

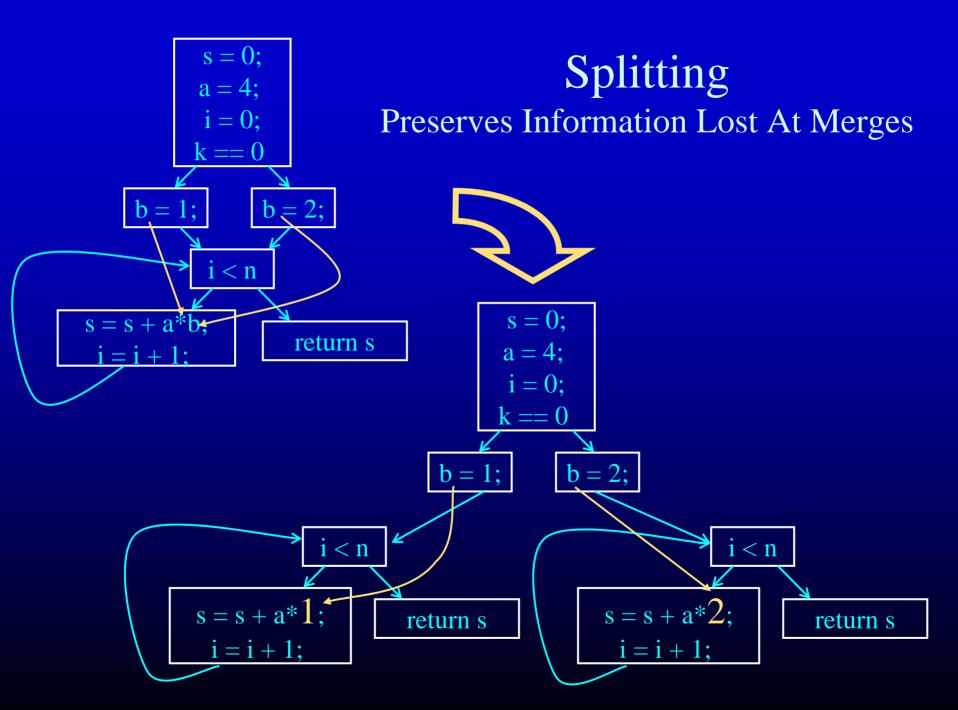
Reaching Definitions and Constant Propagation


- Is a use of a variable a constant?
 - Check all reaching definitions
 - If all assign variable to same constant
 - Then use is in fact a constant
- Can replace variable with constant

Is a Constant in $s = s + a^*b$?

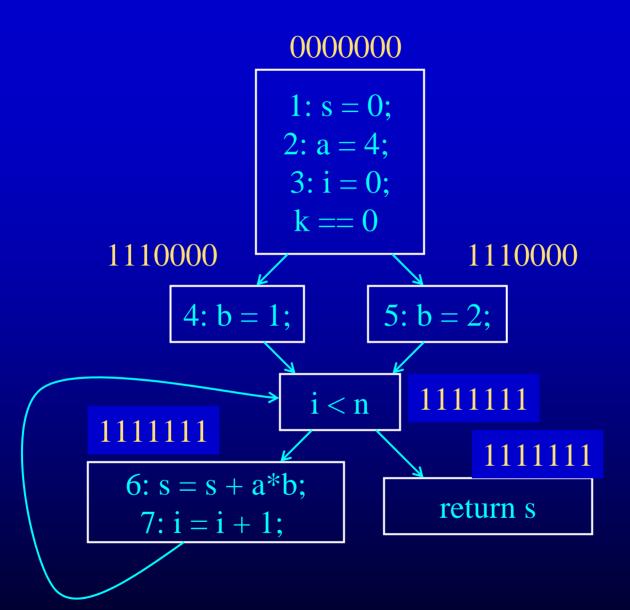

Yes! On all reaching definitions a = 4


Constant Propagation Transform



Yes! On all reaching definitions a = 4

Is b Constant in $s = s + a^*b$?



Computing Reaching Definitions

- Compute with sets of definitions
 - represent sets using bit vectors
 - each definition has a position in bit vector
- At each basic block, compute
 - definitions that reach start of block
 - definitions that reach end of block
- Do computation by simulating execution of program until reach fixed point

Formalizing Analysis

- Each basic block has
 - IN set of definitions that reach beginning of block
 - OUT set of definitions that reach end of block
 - GEN set of definitions generated in block
 - KILL set of definitions killed in block
- GEN[s = s + a*b; i = i + 1;] = 0000011
- KILL[s = s + a*b; i = i + 1;] = 1010000
- Compiler scans each basic block to derive GEN and KILL sets

Dataflow Equations

- IN[b] = OUT[b1] U ... U OUT[bn]
 - where b1, ..., bn are predecessors of b in CFG
- OUT[b] = (IN[b] KILL[b]) U GEN[b]
- IN[entry] = 0000000
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- Initialize with solution of OUT[b] = 0000000
- Repeatedly apply equations
 IN[b] = OUT[b1] U ... U OUT[bn]
 OUT[b] = (IN[b] KILL[b]) U GEN[b]
- Until reach fixed point
- Until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect

Reaching Definitions Algorithm

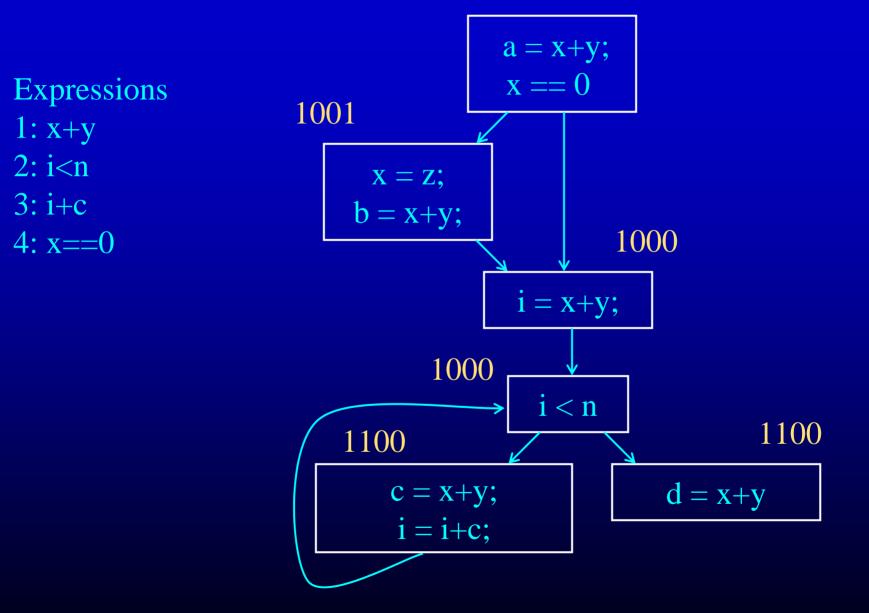
for all nodes n in N OUT[n] = emptyset; // OUT[n] = GEN[n];

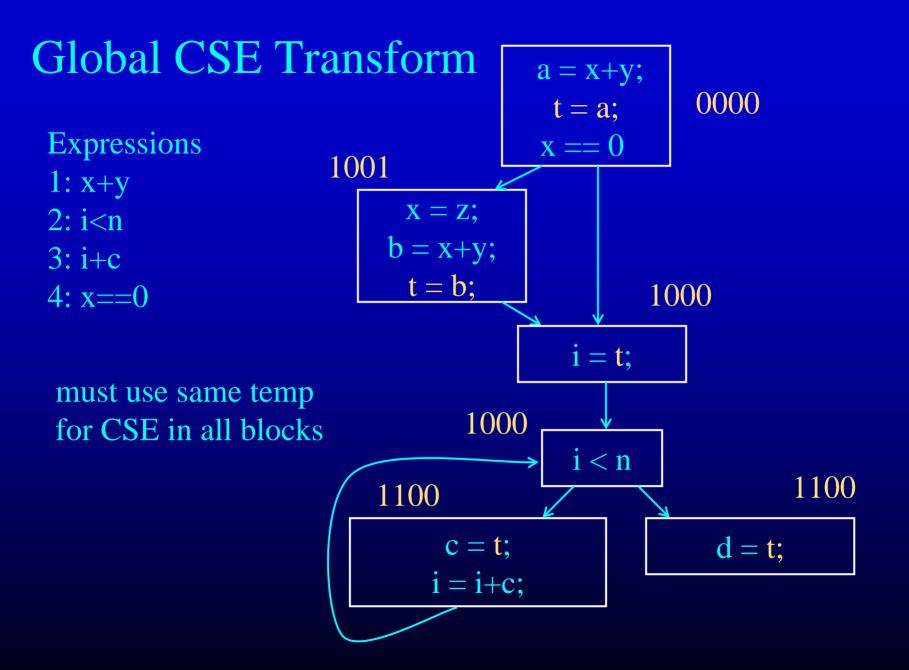
- Changed = N; // N = all nodes in graph
- while (Changed != emptyset)
 - choose a node n in Changed;
 - Changed = Changed { n };
 - IN[n] = emptyset;
 - for all nodes p in predecessors(n) IN[n] = IN[n] U OUT[p];
 - OUT[n] = GEN[n] U (IN[n] KILL[n]);
 - if (OUT[n] changed)

for all nodes s in successors(n) Changed = Changed U { s };

Questions

- Does the algorithm halt?
 - yes, because transfer function is monotonic
 - if increase IN, increase OUT
 - in limit, all bits are 1
- If bit is 1, is there always an execution in which corresponding definition reaches basic block?
- If bit is 0, does the corresponding definition ever reach basic block?
- Concept of conservative analysis


Available Expressions


- An expression x+y is available at a point p if
 - every path from the initial node to p evaluates x+y before reaching p,
 - and there are no assignments to x or y after the evaluation but before p.
- Available Expression information can be used to do global (across basic blocks) CSE
- If expression is available at use, no need to reevaluate it

Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
 - definition reaches a basic block if it comes from ANY predecessor in CFG
 - expression is available at a basic block only if it is available from ALL predecessors in CFG

Formalizing Analysis

- Each basic block has
 - IN set of expressions available at start of block
 - OUT set of expressions available at end of block
 - GEN set of expressions computed in block
 - KILL set of expressions killed in in block
- GEN[x = z; b = x+y] = 1000
- KILL[x = z; b = x+y] = 1001
- Compiler scans each basic block to derive GEN and KILL sets

Dataflow Equations

- IN[b] = OUT[b1] intersect ... intersect OUT[bn]
 where b1, ..., bn are predecessors of b in CFG
- OUT[b] = (IN[b] KILL[b]) U GEN[b]
- IN[entry] = 0000
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- IN[entry] = 0000
- Initialize OUT[b] = 1111
- Repeatedly apply equations
 IN[b] = OUT[b1] intersect ... intersect OUT[bn]
 OUT[b] = (IN[b] KILL[b]) U GEN[b]
- Use a worklist algorithm to reach fixed point

Available Expressions Algorithm for all nodes n in N OUT[n] = E; // OUT[n] = E - KILL[n]; IN[Entry] = emptyset; OUT[Entry] = GEN[Entry]; Changed = N - { Entry }; // N = all nodes in graphwhile (Changed != emptyset) choose a node n in Changed; Changed = Changed - $\{n\};$ IN[n] = E; // E is set of all expressions for all nodes p in predecessors(n) IN[n] = IN[n] intersect OUT[p]; OUT[n] = GEN[n] U (IN[n] - KILL[n]);if (OUT[n] changed) for all nodes s in successors(n) Changed = Changed U { s };

Questions

- Does algorithm always halt?
- If expression is available in some execution, is it always marked as available in analysis?
- If expression is not available in some execution, can it be marked as available in analysis?
- In what sense is algorithm conservative?

General Correctness

- Concept in actual program execution
 - Reaching definition: definition D, execution E at program point P
 - Available expression: expression X, execution E at program point P
- Analysis reasons about all possible executions
- For all executions E at program point P,
 - if a definition D reaches P in E
 - then D is in the set of reaching definitions at P from analysis
- Other way around
 - if D is not in the set of reaching definitions at P from analysis
 - then D never reaches P in any execution E
- For all executions E at program point P,
 - if an expression X is in set of available expressions at P from analysis
 - then X is available in E at P
- Concept of being conservative

Duality In Two Algorithms

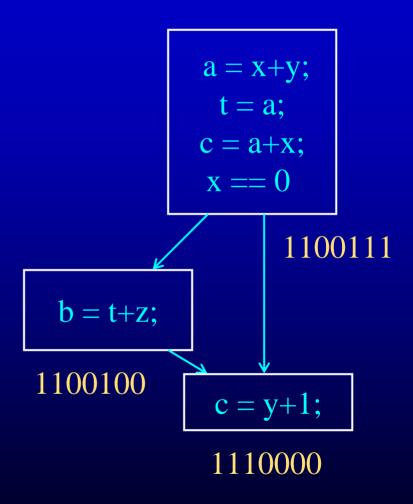
- Reaching definitions
 - Confluence operation is set union
 - OUT[b] initialized to empty set
- Available expressions
 - Confluence operation is set intersection
 - OUT[b] initialized to set of available expressions
- General framework for dataflow algorithms.
- Build parameterized dataflow analyzer once, use for all dataflow problems

Liveness Analysis

- A variable v is live at point p if
 - v is used along some path starting at p, and
 - no definition of v along the path before the use.
- When is a variable v dead at point p?
 - No use of v on any path from p to exit node, or
 - If all paths from p redefine v before using v.

What Use is Liveness Information?

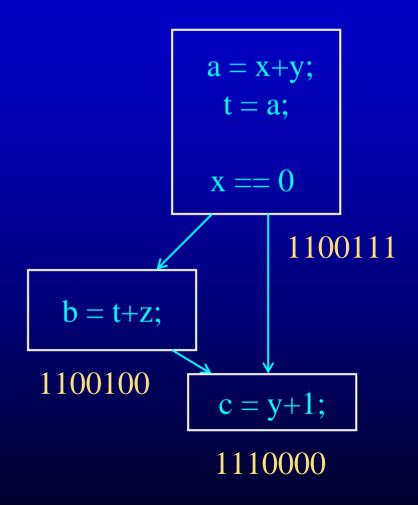
- Register allocation.
 - If a variable is dead, can reassign its register
- Dead code elimination.
 - Eliminate assignments to variables not read later.
 - But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
 - Can eliminate other dead assignments.
 - Handle by making all externally visible variables live on exit from CFG


Conceptual Idea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks

Liveness Example

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector


 order is abcxyzt

Dead Code Elimination

- Assume a,b,c visible outside method
- So are live on exit
- Assume x,y,z,t not visible
- Represent Liveness Using Bit Vector

 order is abcxyzt

Formalizing Analysis

- Each basic block has
 - IN set of variables live at start of block
 - OUT set of variables live at end of block
 - USE set of variables with upwards exposed uses in block
 - DEF set of variables defined in block
- USE[x = z; x = x+1;] = { z } (x not in USE)
- DEF[$x = z; x = x+1; y = 1;] = \{x, y\}$
- Compiler scans each basic block to derive USE and DEF sets

Algorithm

- out[Exit] = emptyset; in[Exit] = use[Exit]; for all nodes n in N - { Exit } in[n] = emptyset; Changed = N - { Exit };
- while (Changed != emptyset)
 - choose a node n in Changed;
 - Changed = Changed { n };
 - out[n] = emptyset;
 - for all nodes s in successors(n) out[n] = out[n] U in[p];
 - in[n] = use[n] U (out[n] def[n]);
 - if (in[n] changed)
 - for all nodes p in predecessors(n)
 - Changed = Changed U { p };

Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses

Analysis Information Inside Basic Blocks

- One detail:
 - Given dataflow information at IN and OUT of node
 - Also need to compute information at each statement of basic block
 - Simple propagation algorithm usually works fine
 - Can be viewed as restricted case of dataflow analysis

Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
 - Assume expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
 - Assume all variables are live at start of analysis
 - Analysis finds variables that are dead
 - Can stop analysis early and use current result
- Dataflow setup same for both analyses
- Optimism/pessimism depends on intended use

Summary

- Basic Blocks and Basic Block Optimizations
 - Copy and constant propagation
 - Common sub-expression elimination
 - Dead code elimination
- Dataflow Analysis
 - Control flow graph
 - IN[b], OUT[b], transfer functions, join points
- Paired analyses and transformations
 - Reaching definitions/constant propagation
 - Available expressions/common sub-expression elimination
 - Liveness analysis/Dead code elimination
- Stacked analysis and transformations work together