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Memory Hierarchy
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8 -30 ns

60 - 250 ns
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Cache Architecture

Pentium D Core 2 Duo jAthelon 64

12 K uops | 64 KB |

l(_;eioc(i)ere) associativity 8 way 8 way 8 way 2 way
Line size 64 bytes | 64 bytes 64 bytes 64 bytes |

size 16 KB 64 KB

I(_;.e(:actoare) l associativity | 8 Way_l_ 8 way |

Line size 64 bytes 64 bytes 64 bytes 64 bytes

| Lltol2 | Latency | 4cycles|  3cycles 3 cycles 3 cycles |
size 4 MB 1 MB

L2 shared | associativity | 8 way | 16 way |
Line size 64 bytes 64 bytes 64 bytes 64 bytes

| L2to L3(off) | latency | 3lcycles| 14 cycles 14 cycles 20 cycles




Cache Misses

Cold misses
— First time a data is accessed
Capacity misses

— Data got evicted between accesses because a lot of other data
(more than the cache size) was accessed

Conflict misses

— Data got evicted because a subsequent access fell on the same
cache line (due to associativity)

True sharing misses (multicores)
— Another processor accessed the data between the accesses

False sharing misses (multicores)

— Another processor accessed different data in the same cache line
between the accesses




Data Reuse

e Temporal Reuse

— A given reference accesses the
same location in multiple
Iterations

e Spatial Reuse

— Accesses to different locations
within the same cache line

e Group Reuse

— Multiple references access the
same location

fori=0to N
foryj=0to N

All =

fori=0to N
foryj=0to N

BLI, I =

fori=0to N
Ali] = A[i-1] + 1
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Loop Transformations

e Transform the iteration space to reduce the
number of misses

e Reuse distance — For a given access, nhumber of
other data items accessed before that data is
accessed again

e Reuse distance > cache size
— Data is spilled between accesses




Loop Transformations

fori=0to N
foryj=0to N
fork=0to N
ALk,]]

Reuse distance = N2

If Cache size < 16 doubles?
A lot of capacity misses




Loop Transformations

fori=0to N
foryj=0to N
fork=0to N
ALk,]]

Loop Interchange

forj=0to N
fori=0to N
fork =0to N
Alk,]]




Loop Transformations

forj=0to N
fori=0to N
fork=0to N
ALk,]]

Cache line size > data size
Cache line size = L
Reuse distance = LN

If cache size < 8 doubles?
Again a lot of capacity misses




Loop Transformations

forj=0to N
fori=0to N
fork =0to N
Alk,]]

Loop Interchange

fork =0to N
fori=0to N
foryj=0to N
ALk,]]




Loop Transformations

fori=0to N
foryj=0to N
fork=0to N
AllLj]= AlLj]+ BlLk]+ Clk,j]

 No matter what loop transformation you do one array
access has to traverse the full array multiple times




Example: Matrix Multiply

1024 1
— m
X E

1024 1024

Data Accessed

X . 1,050,624




Loop Tiling

fori=0to N
forj=0to N

for il = 0 to ceil(N/b)
for jj = 0 to ceil(N/b)
for i = b*ii to min(b*ii+b-1, N)
for j = b*jj to min(b*jj+b-1, N)




Example: Matrix Multiply

1024 1
— (.......1
XE

1024 1024

Data Accessed

X . 1,050,624

1024

=i
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False Sharing Misses

for J =
forall | =
X1, J) = ..

‘\\""‘ Cache Lines




Conflict Misses

for J =
forall | =

X(l, J) =
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Eliminating False Sharing and
Conflict Misses

for J =
forall | =
X1, J) = ..
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Data Transformations

e Similar to loop transformations

e All the accesses have to be updated
— Whole program analysis is required




Strip-Minding

Create two dims from one

With blocksize=4

— |

Bl

Storage
Declaration

(d))]
>
S O
= 0
= 0O
< g

Memory
Layout




Strip-Minding Permutation

Create two dims from one Change memory layout

With blocksize=4

— |
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Storage
Declaration
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Data Transformation Algorithm

Rearrange data: Each processor’s data is contiguous

Use data decomposition
— *, block, cyclic, block-cyclic
Transform each dimension according to the decomposition

Use a combination of strip-mining and permutation primitives
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Example I: (Cyclic, *)
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Performance

LU Decomposition A 5 point stencil
(256x256) 7\l . (512x512)

124468 10 12 16 18 20 22 24 26 28 30 32

LU Decomposition
(1Kx1K)

Parallelizing outer loop

- Best computation placement

- 4 data transformations

12446810 12 16 18 20 22 24 26 28 30 3




Optimizations

e Modulo and division operations in the index calculation
— Very high overhead

e Use standard techniques
— Loop invariant removal, CSE
— Strength reduction exploiting properties of modulo and division
— Use knowledge about the program
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Prefetching

Cache miss stalls the processor for hundreds of cycles
— Start fetching the data early so it'll be available when needed

Pros
— Reduction of cache misses - increased performance

cons

— Prefetch contents for fetch bandwidth
e Solution: Hardware only issue prefetches on unused bandwidth

Evicts a data item that may be used
e Solution: Don’t prefetch too early

Pretech is still pending when the memory is accessed
e Solution: Don’t prefetch too late

Prefetch data is never used
e Solution: Prefetch only data guaranteed to be used

Too many prefetch instructions
e Prefetch only if access is going to miss in the cache




Prefetching

e Compller inserted
— Use reuse analysis to identify misses
— Partition the program and insert prefetches

e Run ahead thread (helper threads)

— Create a separate thread that runs ahead of the main
thread

— Runahead only does computation needed for control-
flow and address calculations

— Runahead performs data (pre)fetches
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Alias Analysis

e Aliases destroy local reasoning

— Simple, local transformations require global reasoning in the
presence of aliases

— A critical i1ssue in pointer-heavy code
— This problem is even worse for multithreaded programs

e Two solutions
— Alias analysis
e Tools to tell us the potential aliases
— Change the programming language
e Languages have no facilities for talking about aliases
e Want to make local reasoning possible

Courtesy of Alex Aiken. Used with permission.




Aliases

e Definition

Two pointers that point to the same location
are aliases

e Example
Y =&7Z
X=Y
*X =3 /[* changes the value of *Y */

Courtesy of Alex Aiken. Used with permission.




Example

foo(int * A, Int * B, int * C, int N)
for 1 = 0 to N-1
A[il= A[i]+ BJ[i] + CIi]

e |s this loop parallel?

e Depends

Int X[1000]; int X[1000];

int Y[1000]; foo(&X[1], &X[0], &X[2], 998);
int Z[1000]
foo(X, Y, Z, 1000);




Points-To Analysis

e Consider:
P=&Q0
Y =&7Z
X=Y
*X=P
e [nformally:
— P can point to Q
— Y can point to Z

— X can point to Z
— Z can point to Q Q

Courtesy of Alex Aiken. Used with permission.




Points-To Relations

e A graph
— Nodes are program names
— Edge (X,y) says x may point to y

e Finite set of names
— Implies each name represents many heap cells

— Correctness: If *x = y In any state of any execution,
then (x,y) Is an edge in the points-to graph

Courtesy of Alex Aiken. Used with permission.




Sensitivity

e Context sensitivity
— Separate different uses of functions

— Different is the key — if the analysis think the input is
the same, reuse the old results

o Flow sensitivity

e For insensitivity makes any permutation of program
statements gives same result

e Flow sensitive is similar to data-flow analysis




Conclusion

Memory systems are designed to give a huge
performance boost for “normal” operations

The performance gap between good and bad
memory usage Is huge

Programs analyses and transformations are
needed

Can off-load this task to the compiler
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