Spring 2010

Memory Optimization

Saman Amarasinghe

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Outline

e |ssues with the Memory System

e Loop Transformations

e Data Transformations
e Prefetching

e Alias Analysis

Memory Hierarchy

1-2ns

3-10ns

8 -30 ns

60 - 250 ns

5-20 ms

Registers

L1 Private Cache

L2/L3
Shared Cache

Main Memory
(DRAM)

Permanent Storage
(Hard Disk)

32 -512 B

16 — 128 KB

1—-16 MB

1 GB — 128 GB

250 MB -4 TB

60%/year
(2x/1.5yr)
DRAM
9%l/year
yrs)

UProc
(2x/

Q
S
O
>
- -
O
-
O
>
.
O
)
)
Q
O
O
—
ol

)
()
i

9ourW.IOoIad

Cache Architecture

Pentium D Core 2 Duo jAthelon 64

12 K uops | 64 KB |

l(_;eioc(i)ere) associativity 8 way 8 way 8 way 2 way
Line size 64 bytes | 64 bytes 64 bytes 64 bytes |

size 16 KB 64 KB

I(_;.e(:actoare) l associativity | 8 Way_l_ 8 way |

Line size 64 bytes 64 bytes 64 bytes 64 bytes

| Lltol2 | Latency | 4cycles| 3cycles 3 cycles 3 cycles |
size 4 MB 1 MB

L2 shared | associativity | 8 way | 16 way |
Line size 64 bytes 64 bytes 64 bytes 64 bytes

| L2to L3(off) | latency | 3lcycles| 14 cycles 14 cycles 20 cycles

Cache Misses

Cold misses
— First time a data is accessed
Capacity misses

— Data got evicted between accesses because a lot of other data
(more than the cache size) was accessed

Conflict misses

— Data got evicted because a subsequent access fell on the same
cache line (due to associativity)

True sharing misses (multicores)
— Another processor accessed the data between the accesses

False sharing misses (multicores)

— Another processor accessed different data in the same cache line
between the accesses

Data Reuse

e Temporal Reuse

— A given reference accesses the
same location in multiple
Iterations

e Spatial Reuse

— Accesses to different locations
within the same cache line

e Group Reuse

— Multiple references access the
same location

fori=0to N
foryj=0to N

All =

fori=0to N
foryj=0to N

BLI, I =

fori=0to N
Ali] = A[i-1] + 1

Outline

Issues with the Memory System

Loop Transformations

Data Transformations
Prefetching

WA IEEWAEWAIR

Loop Transformations

e Transform the iteration space to reduce the
number of misses

e Reuse distance — For a given access, nhumber of
other data items accessed before that data is
accessed again

e Reuse distance > cache size
— Data is spilled between accesses

Loop Transformations

fori=0to N
foryj=0to N
fork=0to N
ALk,]]

Reuse distance = N2

If Cache size < 16 doubles?
A lot of capacity misses

Loop Transformations

fori=0to N
foryj=0to N
fork=0to N
ALk,]]

Loop Interchange

forj=0to N
fori=0to N
fork =0to N
Alk,]]

Loop Transformations

forj=0to N
fori=0to N
fork=0to N
ALk,]]

Cache line size > data size
Cache line size = L
Reuse distance = LN

If cache size < 8 doubles?
Again a lot of capacity misses

Loop Transformations

forj=0to N
fori=0to N
fork =0to N
Alk,]]

Loop Interchange

fork =0to N
fori=0to N
foryj=0to N
ALk,]]

Loop Transformations

fori=0to N
foryj=0to N
fork=0to N
AllLj]= AlLj]+ BlLk]+ Clk,j]

 No matter what loop transformation you do one array
access has to traverse the full array multiple times

Example: Matrix Multiply

1024 1
— m
X E

1024 1024

Data Accessed

X . 1,050,624

Loop Tiling

fori=0to N
forj=0to N

for il = 0 to ceil(N/b)
for jj = 0 to ceil(N/b)
for i = b*ii to min(b*ii+b-1, N)
for j = b*jj to min(b*jj+b-1, N)

Example: Matrix Multiply

1024 1
— (.......1
XE

1024 1024

Data Accessed

X . 1,050,624

1024

=i

Outline

e |ssues with the Memory System

e Loop Transformations

e Data Transformations
e Prefetching

e Alias Analysis

False Sharing Misses

for J =
forall | =
X1, J) = ..

‘\\""‘ Cache Lines

Conflict Misses

for J =
forall | =

X(l, J) =

LA RS e -

LT
3 LD

— T — e —

pad

T g

1 - . _
'-’-1I|'-"--l'1'l'-' F 0 oy

o ‘T? _ | LRI IR IRIT ‘! :

-q——-hn—-i--l-q-
a
--" 11 o ww e
i 1
T | |
1 1 L 5

w7 4

s e B THCT g
[

n 5 W, o= om

i B TN

.

-‘l 'I NN e 1L] --‘—u:
3

e &
.-I'_,

i
wn
T mw —
.-l

—

!Iq I‘: 1 1.'1 I'l' " . 0 IL,] ,-‘
A e R
w A I -'.- "_ Us s |: u:-‘ _'I'- 1|.| r' : f_..

1‘|"IJ

T
-
i

Array X Cache Memory

Eliminating False Sharing and
Conflict Misses

for J =
forall | =
X1, J) = ..

a
T =

REs Ry s By w1 3

Fraiys IR . !.I
n - -

= by Ll
|

.._-..."-
=
o O R

A

ny

13
{u—-.u—- P bl
| —

L
-

Ot

-
|
|
|
|-

@ § Y 1 Lo r
-Ih-t--—ﬁﬁj—,— 4 -ﬁl-ti—i,i——rii-tr——irq—t—
ANAN 3 Floa | =4 &5,
. :F;-p-'_'iq'r-r ;—;—-q-.,‘ A .;.-1‘-.1-'- qrmTgmtd grame o
| F: ' + 1 bd iz ok]

i

s p 1 LA L i
T = 1 —
F - L F

¥ ', Fal | -"I £ = T & T3

- el B WL B B Y

[
B F =

=
o
[

o ra i e (R A N e A
i 173 J, 3) 1

FL
B

T —

arlyd
— . L - -
2 F i F 3 i I y 3
F l £ £ 3
i L-ﬁ-.-;.._i.;_—-‘ -—1-.-“--!'1-——
;i £ A e A 3
. i

P e L O
B S 2 X il]

Data Transformations

e Similar to loop transformations

e All the accesses have to be updated
— Whole program analysis is required

Strip-Minding

Create two dims from one

With blocksize=4

— |

Bl

Storage
Declaration

(d))]
>
S O
= 0
= 0O
< g

Memory
Layout

Strip-Minding Permutation

Create two dims from one Change memory layout

With blocksize=4

— |

Bl

Storage
Declaration

(d))]
>
S O
= 0
= 0O
< g

Memory
Layout

Data Transformation Algorithm

Rearrange data: Each processor’s data is contiguous

Use data decomposition
— *, block, cyclic, block-cyclic
Transform each dimension according to the decomposition

Use a combination of strip-mining and permutation primitives

)
.
O
O
m
N,
O
O
m
N’

Example |

7 AL L
b i) 7
e

)
.
O
O
m
N,
O
O
m
N’

Example |

e

)
.
O
O
m
N,
O
O
m
N’

Example |

A
P

> ilmod‘ '

Permute

%
P

-Mine

Strip

Example I: (Cyclic, *)

Example |: (Cyclic,

I, mod P

Permute

)
X
Q
[E
>
O
|

-Mine

Example |

Strip

Performance

LU Decomposition A 5 point stencil
(256x256) 7\l . (512x512)

124468 10 12 16 18 20 22 24 26 28 30 32

LU Decomposition
(1Kx1K)

Parallelizing outer loop

- Best computation placement

- 4 data transformations

12446810 12 16 18 20 22 24 26 28 30 3

Optimizations

e Modulo and division operations in the index calculation
— Very high overhead

e Use standard techniques
— Loop invariant removal, CSE
— Strength reduction exploiting properties of modulo and division
— Use knowledge about the program

Outline

Issues with the Memory System

Loop Transformations

Data Transformations
Prefetching

e Alias Analysis

Prefetching

Cache miss stalls the processor for hundreds of cycles
— Start fetching the data early so it'll be available when needed

Pros
— Reduction of cache misses - increased performance

cons

— Prefetch contents for fetch bandwidth
e Solution: Hardware only issue prefetches on unused bandwidth

Evicts a data item that may be used
e Solution: Don’t prefetch too early

Pretech is still pending when the memory is accessed
e Solution: Don’t prefetch too late

Prefetch data is never used
e Solution: Prefetch only data guaranteed to be used

Too many prefetch instructions
e Prefetch only if access is going to miss in the cache

Prefetching

e Compller inserted
— Use reuse analysis to identify misses
— Partition the program and insert prefetches

e Run ahead thread (helper threads)

— Create a separate thread that runs ahead of the main
thread

— Runahead only does computation needed for control-
flow and address calculations

— Runahead performs data (pre)fetches

Outline

e |ssues with the Memory System

e Loop Transformations

e Data Transformations
e Prefetching

e Alias Analysis

Alias Analysis

e Aliases destroy local reasoning

— Simple, local transformations require global reasoning in the
presence of aliases

— A critical i1ssue in pointer-heavy code
— This problem is even worse for multithreaded programs

e Two solutions
— Alias analysis
e Tools to tell us the potential aliases
— Change the programming language
e Languages have no facilities for talking about aliases
e Want to make local reasoning possible

Courtesy of Alex Aiken. Used with permission.

Aliases

e Definition

Two pointers that point to the same location
are aliases

e Example
Y =&7Z
X=Y
X =3 /[changes the value of *Y */

Courtesy of Alex Aiken. Used with permission.

Example

foo(int * A, Int * B, int * C, int N)
for 1 = 0 to N-1
A[il= A[i]+ BJ[i] + CIi]

e |s this loop parallel?

e Depends

Int X[1000]; int X[1000];

int Y[1000]; foo(&X[1], &X[0], &X[2], 998);
int Z[1000]
foo(X, Y, Z, 1000);

Points-To Analysis

e Consider:
P=&Q0
Y =&7Z
X=Y
*X=P
e [nformally:
— P can point to Q
— Y can point to Z

— X can point to Z
— Z can point to Q Q

Courtesy of Alex Aiken. Used with permission.

Points-To Relations

e A graph
— Nodes are program names
— Edge (X,y) says x may point to y

e Finite set of names
— Implies each name represents many heap cells

— Correctness: If *x = y In any state of any execution,
then (x,y) Is an edge in the points-to graph

Courtesy of Alex Aiken. Used with permission.

Sensitivity

e Context sensitivity
— Separate different uses of functions

— Different is the key — if the analysis think the input is
the same, reuse the old results

o Flow sensitivity

e For insensitivity makes any permutation of program
statements gives same result

e Flow sensitive is similar to data-flow analysis

Conclusion

Memory systems are designed to give a huge
performance boost for “normal” operations

The performance gap between good and bad
memory usage Is huge

Programs analyses and transformations are
needed

Can off-load this task to the compiler

IT OpenCourseWare
ttp://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

