

First Project Wrap-up

* Any guestions/comments/concerns about
the first project?

* Implementation grade (automated tests;
75%) will be posted by end of week

* Design/doc/write-up grade (subjective;
25%) will be posted in 1-2 weeks

- Project 2 will be posted

— Groups will be created on athena
e (for those that emailed me)

* Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Group Meetings

» Short meeting with me (the TA) and your
group
* Email me to schedule it

* \We will go over your proposed IR design

» Catch problems with design early on

: roject 2

u are here)

oo, P4
- 30% P5
* 30% Quizzes

* 10% Mini-Quizzes (each lecture, 5 so far)

Project Phase 2 Summary

Create a type system for decaf.

— Attributed grammar

Convert concrete syntax of your grammar to high-
level IR.

— Abstract syntax tree plus symbol table(s)

— much simpler than lecture discussion

Semantics Analysis (includes type checking):

— Traverse AST to perform semantic checks

— Build and query symbol table during traversal

Pretty print AST and symbol table during traversal
when in debug mode.

- You decide format

Possible Project Flow

Create a testing infrastructure!
— JUnit or create your own

Write type system

Create a high-level representation of the program

— Convert the concrete syntax to abstract syntax

— Employ parser actions to construct high-level IR during parse
Run semantic checking on high IR

- Visitor(s) on IR or recursive function on IR

- Manipulate symbol table(s) during pass(es)
- Report errors to user

Semantic Checks

* Flow of control checks

- EX: cannot exit from meth without returning a
value of correct type (if meth returns a value)

* Uniqueness check

— EX: identifier cannot be defined twice in same
scope

* Type checks
- EX: each expression has correct type for use

* Your write-up should include a list of all the
checks you implemented.

" SYMBOL TABLES AND
SCOPING

Symbol Tables

A symbol table maps identifiers to types and locations.

For this phase we will build/use the symbol table while
performing semantic checking.

Terminology: symbol table part of environment that
contains bindings.

— Your environment could include multiple symbol tables for multiple
name spaces (see Tiger Book for example)

Implementation decisions entirely at your discretion.

— Write-up should include complete description of your
implementation.

Symbol Tables

* Functionality:

~ Newer bindings have precedence over older
bindings.

- Need a mechanism to undo a set of bindings:

* Used when popping out of a scope
* Many possible choices:

- How many symbol tables?

- Hashing?

- Functional vs. Imperative

* Destructive updates (imperative)
* Immutable, persistent (functional)

| "|gnature (for methods)
- Id -> Type (for type variables)

* What do you need for decaf?

coping
ate name with declaration.

upon entering a block.

3 New scope mean?
'ﬁcurrent scope shadow definitions

s, must remember state of symbol

ve do in a scope?

} table as we visit variable/method

e symbol table as we visit
Sions.

ppens when we
t a scope?

'ﬁmust restore the symbol table to its
. when the scope was entered.

~ ABSTRACT TYPE SYSTEMS

Type System

* Your write-up should include a Type
System for Decaf on abstract syntax.

* A type system is used to define the typing
rules of a programming language.

— A collection of rules for assigning types to
various parts of the program.

- The type system will be implemented in your
compiler.

Type System

* A type system is sound if it allows us to
statically determine if a program has a
type error.

* A language is strongly typed if we can
create a sound type system for it.

Attribute Grammars

* Grammar with productions and associated
actions (just like ANTLR)

* Every non-terminal has an attribute.

* The attribute calculated for the starting
production is the attribute calculated for
the “parse.”

‘Grammar Example

e the Val attribute.

Attribute Rules
» | S.Val = E.val
ESE PLUSE, E.Val = E,.Val + E,.Val
E->1L EVal = L.Val
L -> DIGIT L.Val = digit

::.tated Parse Tree

Attribute Grammar as a
Type System

* Every non-terminal has an attribute, type.

* |If the attribute computed for the program is
not error, then the program type checks.

= JLohe

Example Con't

ieltdecls.type != error and
3 ISSRecs . type !'= error
~ then void

H_else Becor |

{ foreach id in ids {put(id, type);)
e SRRy oe™ = vold |}

SHmRERE SSRE e St hen block
{ stmt.type := 1f e.type = boolean
then block. type
else error :}

Example Con't

- , €xXprN)

1 method and
gg.numArgs = N and

Q
(_l.
N
O
©)
I

cprl.type = sig.argl.type and
__“F:$;2.type B RRCaTrg. . type ..
"H%stﬂén-sig.returnType

else error }

Examples Con’t

ig();
Q_Sig.returnType '= void and

.~ sig.returnType = expr.type
o then void
else error

v CEnc: 051ngSlg () returns the type signature
of the enclosmg method.

Example Con't

'-:cls.type = error or

1ere begin scope () marks the current state of the symbol tat
d end scope () restores the symbol table to the last mark.

Abstract Syntax Tree

* Concrete Syntax (Parse) Tree

- The parse tree produced by your Antlr
grammar

- Redundant and useless information
(punctuation, etc.)

* Abstract Syntax (Parse) Tree
— Clean up parse tree
— Conveys structure of the program
- Represented as data structures in compiler

Choices For Nodes of Parse
Tree

* Homogeneous nodes
- All nodes of the same type
- General node with child pointer and siblings pointers
- Distinguish nodes by internal “type” variable
- Big case statement when walking tree (Antlr can do)

* Heterogeneous nodes
— Multiple types of nodes with different information and
structure
- Use Visitors to walk tree, each node defines how to
visit it

Constructing AST

1. Build your own AST (heterogeneous

nodes)
— From ANTLR’s parse of your grammar
— Constructed with semantic actions.

1. Use ANTLR’s AST (homogeneous nodes)
- Based on grammar
- Can massage tree structure
- Can use TreeWalker to walk tree

BUILD YOUR OWN
HETEROGENEOUS AST

ost non-terminals (kinds) with a
archy:

co1lumn)

> FieldDecl (..)
» LocalDecl (...)
— MethodDecl
* VarDecls (List<vardecl>)

R
GRS SRRSO N EX DT endExXpr, Block block)
= If (Expr expr, Block trueBlock, Block falseBlock)
— Block (VarDecls wvarDecls, Statements stmts)

- et
— BinaryExpr: (Expr exprl, Expr expr2, int operator)
— MethodCallExpr: (Method method, 7?7 args)

tir Actions
n during the parse.

L 0 */ + B |
C D { /* after */ } ;

Typical Antlr Actions

rulle returns | type varName]
{ /7* Initialize vars */ } :
t:TOK b=rule b {
/* set return value,

can use b to refer to
rule b’s return value,

t to refer to token */
}

Antlr Action Example

class IRIT extends IRStmt {
IRIf(C Token t) { ... }

voild setTest(IRExpr e) { ... }
void setStmt(IRStmt S) { ... }

}

stmt returns [IRStmt n] :
IF p=expr THEN t=stmt
{ n = new IRIT(IF);
n.setlTest(p); n.setStmt(t);} ;

Semantics Analysis on
Hetero AST

* Use the visitor pattern as a contract for
classes that walk the AST.

* Manipulate/access symbol table as you
walk.

* Multiple visitors to implement semantic
analysis.

USE ANTLR TO BUILD
HOMOGENEOUS AST

buildAS T=true

class DecafParser extends Parser;
options { burldAST=true; }

* With this option, Antir will create a flat AST
for all matched rules.

* But you have control over how it creates
the AST and what nodes is creates.

* Antlr TreeWalkers are grammar that
specify how to walk the tree.

Antlr Tree Construction Example

expr - mexpr (+° mexpr)* ;
mexpr - INT (C*” INT)* ;

Run on “4+5*6” will give all siblings:

4 ->+->5->%*->0

Tree Construction Control

* After a token, " makes the node a root of a
subtree for the current rule, then we
continue to add sibling to the subtree.

* After a token, ! prevents an AST node from
being built.

onstruction Example

7N mexpr)* ;
I atom)™ ;

~ Run on “4+5%6” will give:

ree Syntax

yer Example

3"! arg)*)?)"l
A\RGS], args); } :

ARGS

arg arg arg

Tree Parsers

* Parse a tree as a stream of nodes in two
dimensions.

* WWe can specify the rules for matching a
tree
— The valid structure of a tree

* We can specify actions that happen while
walking the tree

ceParser;

#(“+” a=expr b=expr) {r = atb:;}
| #(*” a=expr b=expr) {r = a*b;}
| i:zINT
{r = Integer.parselnt(i.getText()):;}

Cons of ANTLR AST
Construction

* Will take you some time to understand
Antlr's AST construction syntax/semantics.

— Expect obscure errors

* Might be difficult to write a TreeWalker for
your AST

- TreeWalkers are good for small grammars
with few node types.

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

