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First Project Wrap-up


●	 Any questions/comments/concerns about 
the first project? 

●	 Implementation grade (automated tests; 
75%) will be posted by end of week 

●	 Design/doc/write-up grade (subjective; 
25%) will be posted in 1-2 weeks 



Groups


● You should be forming them 
– See my email 

● Later today 
– Project 2 will be posted 

– Groups will be created on athena 
● (for those that emailed me) 

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it. 



Group Meetings 
●	 Short meeting with me (the TA) and your 

group 
●	 Email me to schedule it 
●	 We will go over your proposed IR design 
●	 Catch problems with design early on 



Project 2

● 60% Projects 

– 5% P1 

– 7.5% P2 (you are here) 

– 10% P3 

– 7.5% P4 

– 30% P5 

● 30% Quizzes 
● 10% Mini-Quizzes (each lecture, 5 so far) 



Project Phase 2 Summary

●	 Create a type system for decaf. 

–	 Attributed grammar 
●	 Convert concrete syntax of your grammar to high-

level IR. 
–	 Abstract syntax tree plus symbol table(s) 
–	 much simpler than lecture discussion 

●	 Semantics Analysis (includes type checking): 
–	 Traverse AST to perform semantic checks 
–	 Build and query symbol table during traversal 

●	 Pretty print AST and symbol table during traversal
when in debug mode. 
–	 You decide format 



Possible Project Flow


● Create a testing infrastructure! 
– JUnit or create your own 

● Write type system 
● Create a high-level representation of the program 

– Convert the concrete syntax to abstract syntax 
– Employ parser actions to construct high-level IR during parse 

● Run semantic checking on high IR 
– Visitor(s) on IR or recursive function on IR 
– Manipulate symbol table(s) during pass(es) 
– Report errors to user 



Semantic Checks


●	 Flow of control checks 
– Ex: cannot exit from meth without returning a


value of correct type (if meth returns a value)

●	 Uniqueness check 

–	 Ex: identifier cannot be defined twice in same 
scope 

●	 Type checks 
– Ex: each expression has correct type for use


●	 Your write-up should include a list of all the
checks you implemented. 



SYMBOL TABLES AND 
SCOPING 



Symbol Tables

●	 A symbol table maps identifiers to types and locations. 
●	 For this phase we will build/use the symbol table while 

performing semantic checking. 
●	 Terminology: symbol table part of environment that 

contains bindings. 
–	 Your environment could include multiple symbol tables for multiple

name spaces (see Tiger Book for example) 
●	 Implementation decisions entirely at your discretion. 

–	 Write-up should include complete description of your

implementation.




Symbol Tables


●	 Functionality: 
–	 Newer bindings have precedence over older

bindings. 
–	 Need a mechanism to undo a set of bindings: 

●	 Used when popping out of a scope 
●	 Many possible choices: 

–	 How many symbol tables? 
–	 Hashing? 
–	 Functional vs. Imperative 

●	 Destructive updates (imperative) 
●	 Immutable, persistent (functional) 



Bindings


● The symbol table is filled with bindings. 
● Ex: 

– Id -> Type (for value variables) 
– Id -> Signature (for methods) 
– Id -> Type (for type variables) 

● What do you need for decaf? 



Scoping

● Scope Rules: Associate name with declaration. 

● A new scope is created upon entering a block. 



What does a new scope mean?

●	 Variable definitions of current scope shadow definitions

of outer scope. 
●	 Upon entering a scope, must remember state of symbol

table. 



What do we do in a scope?

●	 Add binding to symbol table as we visit variable/method

definitions. 
●	 Look-up variables in the symbol table as we visit

statements and expressions. 



What happens when we

exit a scope?


● Upon exiting a scope, must restore the symbol table to its
state prior to the point when the scope was entered. 



ABSTRACT TYPE SYSTEMS




Type System


●	 Your write-up should include a Type 
System for Decaf on abstract syntax. 

●	 A type system is used to define the typing 
rules of a programming language. 
–	 A collection of rules for assigning types to 

various parts of the program. 
–	 The type system will be implemented in your 

compiler. 



Type System


●	 A type system is sound if it allows us to 
statically determine if a program has a 
type error. 

●	 A language is strongly typed if we can 
create a sound type system for it. 



Attribute Grammars


●	 Grammar with productions and associated 
actions (just like ANTLR) 

●	 Every non-terminal has an attribute. 
●	 The attribute calculated for the starting 

production is the attribute calculated for 
the “parse.” 



Attribute Grammar Example


Calculate the Val attribute. 

Productions Attribute Rules 

S -> E ‘;’ 

E -> E1 PLUS E2 

S.Val = E.val 

E.Val = E1.Val + E2.Val 

E -> L 

L -> DIGIT 

E.Val = L.Val 

L.Val = digit 



Attribute Annotated Parse Tree

3 + 2 + 5; S.Val = 10 

S 

10 
E 

10 

E + E 

; 

E + E L 
55 

3 2 

L L 5 

3 2 



Attribute Grammar as a 

Type System


● Every non-terminal has an attribute, type. 
● If the attribute computed for the program is 

not error, then the program type checks. 



Type System Example


expr -> e1 PLUS e2 


{ expr.type := if e1.type = int and e2.type = int

then int 


else error } 


int_lit -> INT_LITERAL 


{int_lit.type := int }




Type System Example Con’t 

program -> … var_decls methods …

{ program.type := if vardecls.type != error and


methods.type != error

then void

else error }


…

var_decl ->type ids


{ foreach id in ids {put(id, type);}

var_decl.type := void }


…

stmt -> if e then block 


{ stmt.type := if e.type = boolean

then block.type

else error :}




Type System Example Con’t


expr -> id ( expr1, expr2, … , exprN) 


{ sig = lookup(id); 


expr.type := if sig.type = method and


sig.numArgs = N and


expr1.type = sig.arg1.type and


expr2.type = sig.arg2.type …


then sig.returnType


else error }




Type System Examples Con’t 
stmt -> RETURN expr `;’


{ sig = getEnclosingSig();


expr.type := if sig.returnType != void and


sig.returnType = expr.type

then void

else error


}


Where getEnclosingSig() returns the type signature 
of the enclosing method. 



W le
an

Type System Example Con’t

block -> { begin_scope(); }


‘{’ var_decls stmts ‘}’


{


block.type := if var_decls.type = error or


stmts.type = error


then error


else void


end_scope();


}


here begin_scope() marks the current state of the symbol tab 
d end_scope() restores the symbol table to the last mark. 



ABSTRACT SYNTAX TREES




Abstract Syntax Tree


●	 Concrete Syntax (Parse) Tree 
–	 The parse tree produced by your Antlr 

grammar 
–	 Redundant and useless information


(punctuation, etc.)

●	 Abstract Syntax (Parse) Tree 

–	 Clean up parse tree 
–	 Conveys structure of the program 
–	 Represented as data structures in compiler 



Choices For Nodes of Parse

Tree


●	 Homogeneous nodes 
–	 All nodes of the same type 
–	 General node with child pointer and siblings pointers 
–	 Distinguish nodes by internal “type” variable 
–	 Big case statement when walking tree (Antlr can do) 

●	 Heterogeneous nodes 
–	 Multiple types of nodes with different information and 

structure 
–	 Use Visitors to walk tree, each node defines how to 

visit it 



Constructing AST


1. Build your own AST (heterogeneous

nodes)


− From ANTLR’s parse of your grammar

− Constructed with semantic actions.


1. Use ANTLR’s AST (homogeneous nodes)

– Based on grammar 
– Can massage tree structure 
– Can use TreeWalker to walk tree 



BUILD YOUR OWN 
HETEROGENEOUS AST 



Abstract Syntax Representation

●	 Separate class for most non-terminals (kinds) with a

sensible class hierarchy: 
–	 IR: (line number, column)


• Decl(…)

– VarDecl(…)


» FieldDecl(…)

» LocalDecl(…)


– MethodDecl

• VarDecls(List<vardecl>)

• Statement(…)


– For (Expr initExpr, Expr endExpr, Block block)

– If (Expr expr, Block trueBlock, Block falseBlock)

– Block (VarDecls varDecls, Statements stmts)


• Expr(…)

– BinaryExpr: (Expr expr1, Expr expr2, int operator)

– MethodCallExpr: (Method method, ?? args)




Antlr Actions


● Code that is run during the parse. 

rule { /* before */ } : 


A { /* during */ } B | 


C D { /* after */ } ; 




Typical Antlr Actions 

rule returns [ type varName ]


{ /* initialize vars */ } :


t:TOK b=rule_b {


/* set return value,


can use b to refer to

rule_b’s return value,


t to refer to token */


} ;




Antlr Action Example 

class IRif extends IRStmt { 


IRif( Token t ) { ... } 


void setTest( IRExpr e ) { ... } 

void setStmt( IRStmt S) { ... } 


} 


stmt returns [IRStmt n] : 


IF p=expr THEN t=stmt 


{ n = new IRif(IF); 


n.setTest(p); n.setStmt(t);} ;




Semantics Analysis on

Hetero AST


●	 Use the visitor pattern as a contract for 
classes that walk the AST. 

●	 Manipulate/access symbol table as you 
walk. 

●	 Multiple visitors to implement semantic 
analysis. 



USE ANTLR TO BUILD

HOMOGENEOUS AST




buildAST=true


class DecafParser extends Parser; 

options { buildAST=true; }


●	 With this option, Antlr will create a flat AST 
for all matched rules. 

●	 But you have control over how it creates

the AST and what nodes is creates.


●	 Antlr TreeWalkers are grammar that 
specify how to walk the tree. 



Antlr Tree Construction Example


expr : mexpr (’+’ mexpr)* ;


mexpr : INT (’*’ INT)* ; 


Run on “4+5*6” will give all siblings: 

4 -> + -> 5 -> * -> 6 



Tree Construction Control


●	 After a token, ˆ makes the node a root of a 
subtree for the current rule, then we 
continue to add sibling to the subtree. 

●	 After a token, ! prevents an AST node from 
being built. 



Antlr Tree Construction Example 

expr : mexpr (’+’^ mexpr)* ; 

mexpr : atom (’*’^ atom)* ; 

atom : INT ; 

Run on “4+5*6” will give: + 

*4 

5 6 



LISP-like Tree Syntax


● #(parent child1 child2 …)


A 

B C 

● EX: #(A B C)


● EX: #(A (#B C D) E)


A 

EB 

C D 



Another Example


args:


"("! ( arg (","! arg)* )? ")"!

{ #args = #([ARGS], args); } ;


ARGS


arg arg arg




What to do? 

uminus: (MINUS)* expr;




Tree Parsers


●	 Parse a tree as a stream of nodes in two 
dimensions. 

●	 We can specify the rules for matching a 
tree 
–	 The valid structure of a tree 

●	 We can specify actions that happen while 
walking the tree 



Example

expr : mexpr (“+”^ mexpr)* ;


mexpr : atom (“*”^ atom)* ;


atom: INT; 


class CalcTreeWalker extends TreeParser;


expr returns [int r]


{ 

int a,b; 

r=0; 

} 

: #(“+” a=expr b=expr) {r = a+b;} 

| #(“*” a=expr b=expr) {r = a*b;} 

| i:INT 

{r = Integer.parseInt(i.getText());}


;




Cons of ANTLR AST

Construction


●	 Will take you some time to understand 
Antlr’s AST construction syntax/semantics. 
–	 Expect obscure errors 

●	 Might be difficult to write a TreeWalker for 
your AST 
–	 TreeWalkers are good for small grammars 

with few node types. 
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