Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Tutorial 6: Solutions

1. Let $Z=X+Y$. Using the 2 step CDF method,

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(Z \leq z) \\
& =\mathbf{P}(X+Y \leq z)
\end{aligned}
$$

Using the Total Probability Theorem, we have

$$
\begin{aligned}
F_{Z}(z) & =\sum_{x} p_{X}(x) p(x+Y \leq z) \\
& =\sum_{x} p_{X}(x) p(Y \leq z-x) \\
& =\sum_{x} p_{X}(x) F_{Y}(z-x)
\end{aligned}
$$

Differentiating both sides with respect to z, we obtain

$$
\begin{aligned}
f_{Z}(z) & =\frac{d}{d z} F_{Z}(z) \\
& =\sum_{x} p_{X}(x) f_{Y}(z-x)
\end{aligned}
$$

2. We will condition on X and use the law of total variance

$$
\operatorname{var}(X+Y)=\mathbf{E}[\operatorname{var}(X+Y \mid X)]+\operatorname{var}(\mathbf{E}[X+Y \mid X])
$$

Given a value x of X, the random variable Y is uniformly distributed in the interval $[x, x+1]$, and the random variable $X+Y$ is uniformly distributed in the interval [$2 x, 2 x+1]$. Therefore, $\mathbf{E}[X+Y \mid X]=0.5+2 X$ and $\operatorname{var}(X+Y \mid X)=1 / 12$. Thus,

$$
\operatorname{var}(X+Y)=\operatorname{var}(0.5+2 X)+\mathbf{E}[1 / 12]=4 \operatorname{var}(X)+\mathbf{E}[1 / 12]=\frac{5}{12}
$$

3. (a) Let X_{i} be independent Bernoulli random variables that are equal to 1 if the i th flip results in heads. Let N be the number of coin flips. We have $\mathbf{E}\left[X_{i}\right]=1 / 2, \operatorname{var}\left(X_{i}\right)=1 / 4, \mathbf{E}[N]=7 / 2$, and $\operatorname{var}(N)=35 / 12$. (The last equality is obtained from the formula for the variance of a discrete uniform random variable.) Therefore, the expected number of heads is

$$
\mathbf{E}\left[X_{i}\right] \mathbf{E}[N]=\frac{7}{4},
$$

and the variance is

$$
\operatorname{var}\left(X_{i}\right) \mathbf{E}[N]+\left(\mathbf{E}\left[X_{i}\right]\right)^{2} \operatorname{var}(N)=\frac{1}{4} \cdot \frac{7}{2}+\frac{1}{4} \cdot \frac{35}{12}=\frac{77}{48} .
$$

(b) The experiment in part (b) can be viewed as consisting of two independent repetitions fo the experiment in part (a). Thus, both the mean and the variance are doubled and become $7 / 2$ and $77 / 24$, respectively.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

