# Massachusetts Institute of Technology <br> Department of Electrical Engineering \& Computer Science <br> 6.041/6.431: Probabilistic Systems Analysis 

(Fall 2010)

## Recitation 11

## October 14, 2010

1. Let $X$ be a discrete random variable that takes the values 1 with probability $p$ and -1 with probability $1-p$. Let $Y$ be a continuous random variable independent of $X$ with the Laplacian (two-sided exponential) distribution

$$
f_{Y}(y)=\frac{1}{2} \lambda e^{-\lambda|y|},
$$

and let $Z=X+Y$. Find $\mathbf{P}(X=1 \mid Z=z)$. Check that the expression obtained makes sense for $p \rightarrow 0^{+}, p \rightarrow 1^{-}, \lambda \rightarrow 0^{+}$, and $\lambda \rightarrow \infty$.
2. Let $Q$ be a continuous random variable with PDF

$$
f_{Q}(q)= \begin{cases}6 q(1-q), & \text { if } 0 \leq q \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

This $Q$ represents the probability of success of a Bernoulli random variable $X$, i.e.,

$$
\mathbf{P}(X=1 \mid Q=q)=q .
$$

Find $f_{Q \mid X}(q \mid x)$ for $x \in\{0,1\}$ and all $q$.
3. Let $X$ have the normal distribution with mean 0 and variance 1, i.e.,

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Also, let $Y=g(X)$ where

$$
g(t)=\left\{\begin{array}{cc}
-t, & \text { for } t \leq 0 \\
\sqrt{t}, & \text { for } t>0
\end{array}\right.
$$

as shown to the right.
Find the probability density function of $Y$.


MIT OpenCourseWare
http://ocw.mit.edu

### 6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

