Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 7

September 30, 2010

1. Problem 2.35, page 130 in the text. Verify the expected value rule

$$
\mathbf{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y),
$$

using the expected value rule for a function of a single random variable. Then, use the rule for the special case of a linear function, to verify the formula

$$
\mathbf{E}[a X+b Y]=a \mathbf{E}[X]+b \mathbf{E}[Y],
$$

where a and b are given scalars.
2. Random variables X and Y can take any value in the set $\{1,2,3\}$. We are given the following information about their joint PMF, where the entries indicated by a * are left unspecified:

(a) What is $p_{X}(1)$?
(b) Provide a clearly labeled sketch of the conditional PMF of Y given that $X=1$.
(c) What is $\mathbf{E}[Y \mid X=1]$?
(d) Is there a choice for the unspecified entries that would make X and Y independent?

Let B be the event that $X \leq 2$ and $Y \leq 2$. We are told that conditioned on B, the random variables X and Y are independent.
(e) What is $p_{X, Y}(2,2)$?
(If there is not enough information to determine the answer, say so.)
(f) What is $p_{X, Y \mid B}(2,2 \mid B)$?
(If there is not enough information to determine the answer, say so.)
3. Problem 2.33, page 128 in the text. A coin that has probability of heads equal to p is tossed successively and independently until a head comes twice in a row or a tail comes twice in a row. Find the expected value of the number of tosses.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

