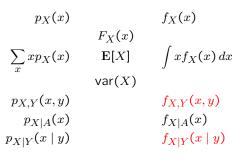
LECTURE 9

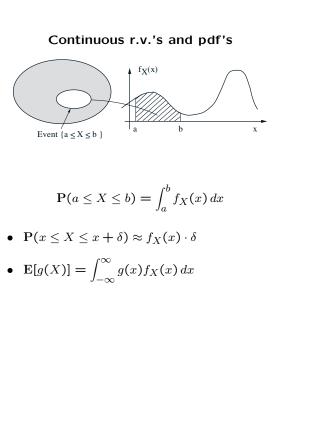
• Readings: Sections 3.4-3.5

Outline

- PDF review
- Multiple random variables
- conditioning
- independence
- Examples

Summary of concepts





Joint PDF $f_{X,Y}(x,y)$

$$\mathbf{P}((X,Y)\in S) = \int \int_S f_{X,Y}(x,y) \, dx \, dy$$

• Interpretation:

 $\mathbf{P}(x \le X \le x + \delta, \ y \le Y \le y + \delta) \approx f_{X,Y}(x,y) \cdot \delta^2$

- Expectations: $\mathbf{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy$
- From the joint to the marginal:

$f_X(x) \cdot \delta \approx \mathbf{P}(x \le X \le x + \delta) =$

X and Y are called independent if
 f_{X,Y}(x, y) = f_X(x)f_Y(y), for all x, y

Buffon's needle

Parallel lines at distance d Needle of length l (assume l < d)
Find P(needle intersects one of the lines)

- $X \in [0, d/2]$: distance of needle midpoint to nearest line
- Model: X, Θ uniform, independent

$$f_{X,\Theta}(x,\theta) = 0 \le x \le d/2, \ 0 \le \theta \le \pi/2$$

• Intersect if $X \leq \frac{\ell}{2} \sin \Theta$

$$P\left(X \le \frac{\ell}{2}\sin\Theta\right) = \int \int_{x \le \frac{\ell}{2}\sin\theta} f_X(x) f_{\Theta}(\theta) \, dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \int_0^{(\ell/2)\sin\theta} \, dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \frac{\ell}{2}\sin\theta \, d\theta = \frac{2\ell}{\pi d}$$

Conditioning

Recall

 $\mathbf{P}(x \le X \le x + \delta) \approx f_X(x) \cdot \delta$

By analogy, would like:

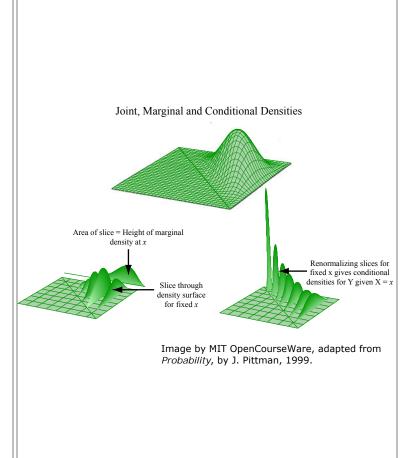
 $\mathbf{P}(x \le X \le x + \delta \mid Y \approx y) \approx f_{X|Y}(x \mid y) \cdot \delta$

• This leads us to the **definition**:

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
 if $f_Y(y) > 0$

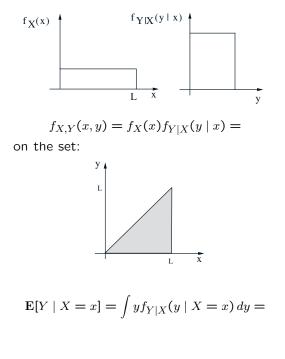
- For given y, conditional PDF is a (normalized) "section" of the joint PDF
- If independent, $f_{X,Y} = f_X f_Y$, we obtain

$$f_{X|Y}(x|y) = f_X(x)$$

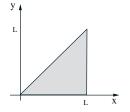


Stick-breaking example

 Break a stick of length ℓ twice: break at X: uniform in [0, 1]; break again at Y, uniform in [0, X]



$$f_{X,Y}(x,y) = \frac{1}{\ell x}, \qquad 0 \le y \le x \le \ell$$



$$f_Y(y) = \int f_{X,Y}(x,y) \, dx$$

= $\int_y^\ell \frac{1}{\ell x} \, dx$
= $\frac{1}{\ell} \log \frac{\ell}{y}, \qquad 0 \le y \le \ell$
$$\mathbf{E}[Y] = \int_0^\ell y f_Y(y) \, dy = \int_0^\ell y \frac{1}{\ell} \log \frac{\ell}{y} \, dy = \frac{\ell}{4}$$

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.