Tutorial 7 October 28/29, 2010

1. Alice and Bob alternate playing at the casino table. (Alice starts and plays at odd times $i = 1, 3, \ldots$; Bob plays at even times $i = 2, 4, \ldots$) At each time i, the net gain of whoever is playing is a random variable G_i with the following PMF:

$$p_G(g) = \begin{cases} \frac{1}{3} & g = -2, \\ \frac{1}{2} & g = 1, \\ \frac{1}{6} & g = 3, \\ 0 & \text{otherwise} \end{cases}$$

Assume that the net gains at different times are independent. We refer to an outcome of -2 as a "loss."

- (a) They keep gambling until the first time where a loss by Bob immediately follows a loss by Alice. Write down the PMF of the total number of rounds played. (A round consists of two plays, one by Alice and then one by Bob.)
- (b) Write down the PMF for Z, defined as the time at which Bob has his third loss.
- (c) Let N be the number of rounds until each one of them has won at least once. Find $\mathbf{E}[N]$.
- 2. Problem 6.6, page 328 in text.

Sum of a geometric number of independent geometric random variables

Let $Y = X_1 + \cdots + X_N$, where the random variable X_i are geometric with parameter p, and N is geometric with parameter q. Assume that the random variables N, X_1, X_2, \cdots are independent. Show that Y is geometric with parameter pq. *Hint:* Interpret the various random variables in terms of a split Bernoulli process.

- 3. A train bridge is constructed across a wide river. Trains arrive at the bridge according to a Poisson process of rate $\lambda = 3$ per day.
 - (a) If a train arrives on day 0, find the probability that there will be no trains on days 1, 2, and 3.
 - (b) Find the probability that the next train to arrive after the first train on day 0, takes more than 3 days to arrive.
 - (c) Find the probability that no trains arrive in the first 2 days, but 4 trains arrive on the 4^{th} day.
 - (d) Find the probability that it takes more than 2 days for the 5^{th} train to arrive at the bridge.

MIT OpenCourseWare http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.