LECTURE 10

Continuous Bayes rule;

Derived distributions

- Readings:

Section 3.6; start Section 4.1

Review

$$
\begin{array}{cl}
p_{X}(x) & f_{X}(x) \\
p_{X, Y}(x, y) & f_{X, Y}(x, y) \\
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} & f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
p_{X}(x)=\sum_{y} p_{X, Y}(x, y) & f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
F_{X}(x)=\mathbf{P}(X \leq x) \\
\mathbf{E}[X], \quad \operatorname{var}(X)
\end{array}
$$

The Bayes variations

$$
\begin{gathered}
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{p_{X}(x) p_{Y \mid X}(y \mid x)}{p_{Y}(y)} \\
p_{Y}(y)=\sum_{x} p_{X}(x) p_{Y \mid X}(y \mid x)
\end{gathered}
$$

Example:

- $X=1,0$: airplane present/not present
- $Y=1,0$: something did/did not register on radar

Continuous counterpart

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y \mid X}(y \mid x)}{f_{Y}(y)} \\
f_{Y}(y)=\int_{x} f_{X}(x) f_{Y \mid X}(y \mid x) d x
\end{gathered}
$$

Example: X : some signal; "prior" $f_{X}(x)$
Y : noisy version of X
$f_{Y \mid X}(y \mid x)$: model of the noise

Discrete X, Continuous Y

$$
\begin{gathered}
p_{X \mid Y}(x \mid y)=\frac{p_{X}(x) f_{Y \mid X}(y \mid x)}{f_{Y}(y)} \\
f_{Y}(y)=\sum_{x} p_{X}(x) f_{Y \mid X}(y \mid x)
\end{gathered}
$$

Example:

- X : a discrete signal; "prior" $p_{X}(x)$
- Y : noisy version of X
- $f_{Y \mid X}(y \mid x)$: continuous noise model

Continuous X, Discrete Y

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{X}(x) p_{Y \mid X}(y \mid x)}{p_{Y}(y)} \\
& p_{Y}(y)=\int_{x} f_{X}(x) p_{Y \mid X}(y \mid x) d x
\end{aligned}
$$

Example:

- X : a continuous signal; "prior" $f_{X}(x)$
(e.g., intensity of light beam);
- Y : discrete r.v. affected by X
(e.g., photon count)
- $p_{Y \mid X}(y \mid x)$: model of the discrete r.v.

What is a derived distribution

- It is a PMF or PDF of a function of one or more random variables with known probability law. E.g.:

- Obtaining the PDF for

$$
g(X, Y)=Y / X
$$

involves deriving a distribution. Note: $g(X, Y)$ is a random variable

When not to find them

- Don't need PDF for $g(X, Y)$ if only want to compute expected value:

$$
\mathbf{E}[g(X, Y)]=\iint g(x, y) f_{X, Y}(x, y) d x d y
$$

How to find them

- Discrete case

- Obtain probability mass for each possible value of $Y=g(X)$

$$
\begin{aligned}
p_{Y}(y) & =\mathbf{P}(g(X)=y) \\
& =\sum_{x: g(x)=y} p_{X}(x)
\end{aligned}
$$

The continuous case

- Two-step procedure:
- Get CDF of $Y: F_{Y}(y)=\mathbf{P}(Y \leq y)$
- Differentiate to get

$$
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)
$$

Example

- X : uniform on $[0,2]$
- Find PDF of $Y=X^{3}$
- Solution:

$$
\begin{gathered}
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{3} \leq y\right) \\
=\mathbf{P}\left(X \leq y^{1 / 3}\right)=\frac{1}{2} y^{1 / 3} \\
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)=\frac{1}{6 y^{2 / 3}}
\end{gathered}
$$

Example

- Joan is driving from Boston to New York. Her speed is uniformly distributed between 30 and 60 mph . What is the distribution of the duration of the trip?
- Let $T(V)=\frac{200}{V}$.
- Find $f_{T}(t)$

$$
Y=2 X+5:
$$

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Use this to check that if X is normal, then $Y=a X+b$ is also normal.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

