Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Tutorial 7: Solutions

1. (a) For each round, the probability that both Alice and Bob have a loss is $\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}$. Let random variable X represent the total number of rounds played until the first time where they both have a loss. Then X is a geometric random variable with parameter $p=1 / 9$ and has the following PMF.

$$
p_{X}(x)=(1-p)^{x-1} p=\left(\frac{8}{9}\right)^{x-1}\left(\frac{1}{9}\right), \quad x=1,2, \ldots
$$

(b) First, consider the number of games, K_{3} Bob played until his third loss. Random variable K_{3} is a Pascal random variable and has the following PMF.

$$
p_{K_{3}}(k)=\binom{k-1}{3-1}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{k-3} \quad k=3,4,5, \cdots
$$

In this question, we are interested in another random variable Z defined as the time at which Bob has his third loss. Note that $Z=2 K_{3}$. By changing variables, we obtain

$$
p_{Z}(z)=\binom{\frac{z}{2}-1}{3-1}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{\frac{z}{2}-3} \quad z=6,8,10, \cdots
$$

(c) Let A be the event that Alice wins, and Let B be the event that Bob wins. The event $A \cup B$ is then the event that either A wins or B wins or both A and B win, and the event $A \cap B$ is the event that both A and B win. Suppose we observe this gambling process, and let U be a random variable indicating the number of rounds we see until at least one of them wins. Random variable U is a geometric random variable with parameter $p=P(A \cup B)=1-\frac{1}{3} \cdot \frac{1}{3}$.

Consider another random variable V representing the number of additional rounds we have to observe until the other wins. If both Alice and Bob win at the U th round, then $V=0$. This occurs with probability $P(A \cap B \mid A \cup B)=\frac{\frac{2}{3}}{\frac{3}{9}}$. If Alice wins the U th round, then the time V until Bob wins is a geometric random variable with parameter $p=1 / 2+1 / 6=2 / 3$. This occurs with probability $P\left(A \cap B^{c} \mid A \cup B\right)=\frac{\frac{1}{3} \frac{2}{3}}{\frac{8}{9}}$. Likewise, if Bob wins the U th round, then the time V until Alice wins is a geometric random variable with parameter $p=1 / 2+1 / 6=2 / 3$. This occurs with probability $P\left(B \cap A^{c} \mid A \cup B\right)=\frac{\frac{1}{3} \frac{2}{3}}{\frac{8}{9}}$. The number of rounds until each one of them has won at least once, N is

$$
N=U+V
$$

The expectation of N is then:

$$
\begin{aligned}
E[N] & =E[U]+E[V] \\
& =\frac{1}{\frac{8}{9}}+0 \cdot P(A \cap B \mid A \cup B)+\frac{1}{\frac{2}{3}} P(A \mid A \cup B)+\frac{1}{\frac{2}{3}} P(B \mid A \cup B) \\
& =9 / 8+\frac{3}{2} \frac{\frac{1}{3} \frac{2}{3}}{\frac{8}{9}}+\frac{3}{2} \frac{\frac{1}{3}}{\frac{8}{9}} \\
& =15 / 8
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
There is another approach to this problem. Consider the following partition.
A_{1} : both win first round
A_{2} :Only Alice wins first round
A_{3} : Only Bob wins first round
A_{4} : both lose first round
Event A_{1} occurs with probability $\frac{2}{3} \cdot \frac{2}{3}$. Event A_{2} occurs with probability $\frac{2}{3} \cdot \frac{1}{3}$. Event A_{3} occurs with probability $\frac{1}{3} \cdot \frac{2}{3}$. Event A_{4} occurs with probability $\frac{1}{3} \cdot \frac{1}{3}$. When event A_{2} $\left(A_{3}\right)$ occurs, the distribution on the time until Bob (Alice) wins is a geometric random variable with mean $\frac{1}{\frac{2}{3}}$. When event A_{4} occurs, the additional time until Alice and Bob win is distributed identically to that at time 0 by the fresh-start property. By the total expectation theorem,

$$
\begin{aligned}
E[N] & =E\left[N \mid A_{1}\right] P\left(A_{1}\right)+E\left[N \mid A_{2}\right] P\left(A_{2}\right)+E\left[N \mid A_{3}\right] P\left(A_{3}\right) E[N]+E\left[N \mid A_{4}\right] P\left(A_{4}\right) \\
& =1 \cdot\left(\frac{2}{3} \cdot \frac{2}{3}\right)+\left(1+\frac{1}{\frac{2}{3}}\right) \cdot+\left(\frac{1}{3} \cdot \frac{2}{3}\right)+\left(\frac{1}{3} \cdot \frac{2}{3}\right)+(1+E[N]) \cdot\left(\frac{1}{3} \cdot \frac{1}{3}\right)
\end{aligned}
$$

Solving for $E[N]$, we get $E[N]=\frac{15}{8}$.
2. Problem 6.6, page 328 in text. See text for solutions.
3. (a) The number of trains arriving on days 1,2 , and 3 is independent of the number of trains arriving on day 0 . Let N denote the total number of trains that arrive on days 1,2 , and 3 . Then N is a Poisson random variable with parameter $3 \lambda=9$, and we have

$$
\begin{aligned}
P(\text { no train on days } 1,2,3 \mid \text { one train on day } 1) & =P(\text { no train on days } 1,2,3) \\
& =P(N=0) \\
& =\frac{e^{-9} 9^{0}}{0!} \\
& =e^{-9} .
\end{aligned}
$$

(b) The event that the next arrival is more than three days after the train arrival on day 0 is the same as the event that there are zero arrivals in the three days after the train arrival on day 0 . Therefore the required probability is the same as that found in part (a), namely, e^{-9}.
(c) The number of trains arriving in the first 2 days is independent of the number of trains arriving on day 4 . Therefore, we have
$P(0$ trains in first 2 days and 4 trains on day 4$)=P(0$ trains in first 2 days $) \cdot P(4$ trains on day 4$)$

$$
\begin{aligned}
& =e^{-2 \lambda} \frac{(2 \lambda)^{0}}{0!} \cdot e^{-\lambda} \frac{\lambda^{4}}{4!} \\
& =e^{-9} \frac{3^{4}}{4!}
\end{aligned}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
(d) The event that it takes more than 2 days for the 5 th arrival is equivalent to the event that there are at most 4 arrivals in the first 2 days. Therefore the required probability is equal to

$$
\begin{aligned}
\sum_{k=0}^{4} P(\text { exactly } k \text { arrivals in first } 2 \text { days }) & =\sum_{k=0}^{4} e^{-2 \lambda} \frac{(2 \lambda)^{k}}{k!} \\
& =e^{-2 \lambda}\left(\frac{(2 \lambda)^{0}}{0!}+\frac{(2 \lambda)^{1}}{1!}+\frac{(2 \lambda)^{2}}{2!}+\frac{(2 \lambda)^{3}}{3!}+\frac{(2 \lambda)^{4}}{4!}\right) \\
& =e^{-6}(1+6+18+36+54) \\
& =115 e^{-6}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

