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Tutorial 11 Solutions 

1. (a) The LMS estimator is 
 

1 
 X 0 ≤ X < 1 

g(x) = E[Y |X] = X − 
2

1 
 2 

1 ≤ X ≤ 2 
 
 Undefined Otherwise 

(b) If x ∈ [0, 1], the conditional PDF of Y is uniform over the interval [0, x], and 

[ ] 2 

E (Y − g(X))2 | X = x = 
x

. 
12 

Similarly, if x ∈ [1, 2], the conditional PDF of Y is uniform over [1 − x, x], and 

E (Y − g(X))2 | X = x = 1/12. 

(c) The expectations E [( Y −g(X) 
)

2
] 
and E [var(Y |X)] are equal because by the law of iterated 

expectations, 
) ] [ [ ]] 

E [(Y − g(X) 2 = E E (Y − g(X))2 | X = E[var(Y | X)]. 

Recall from part (b) that 

2 x 
12 0 ≤ x < 1,

var(Y |X = x) = 
1 1 ≤ x ≤ 2.
12 

It follows that 
∫ ∫ 2 ∫

1 x 2 2 1 2 5 
E[var(Y | X)] = var(Y | X = x)fX (x)dx = . xdx + . dx = . 

x 0 12 3 1 12 3 72 

Note that 

2x/3 0 ≤ x < 1,
fX (x) = 

2/3 1 ≤ x ≤ 2. 

(d) The linear LMS estimator is 

cov(X, Y )
L(X) = E[Y ] + [X − E[X]]. 

var(X) 

In order to calculate var(X) we first calculate E[X2] and E[X]2 . 

E[X2] = 

∫ 
2 
x 3 2 

∫ 
2

2 2 
dx + x dx, 

0 3 1 3
31 

= ,
18
∫ 

2 2 2 2 
E[X] = x 2 dx + x dx, 

0 3 1 3
11 

= 
9
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var(X) = E[X2] − E[X]2 = 37 .
162 

∫ 
1 ∫ ∫ ∫ xx 2 2 2 1 2 7 

E[Y ] = y dydx + y dydx = + = . 
0 0 3 1 x−1 3 9 3 9 

To determine cov(X, Y ) we need to evaluate E[XY ]. 

E[Y X] = xyfX,Y (x, y)dydx 
x y 
∫ 

1 ∫ x 2 
∫ 

2 ∫ x 2 
= yx dydx + yx dydx 

0 0 3 1 x−1 3
41 

= 
36 

61 Therefore cov(X, Y ) = E[XY ] − E[X]E[Y ] = 
324 . Therefore, 

7 61 11 
L(X) = + [X − ]. 

9 74 9 

(e) The LMS estimator is the one that minimizes mean squared error (among all estimators of 
Y based on X). The linear LMS estimator, therefore, cannot perform better than the LMS 
estimator, i.e., we expect E[(Y − L(X))2] ≥ E[(Y − g(X))2]. In fact, 

E[(Y − L(X))2] = σY 
2 (1 − ρ2), 

= σY 
2 (1 − 

cov(X, Y )2 

),
σ2 σ2 

X Y 

37 61 
= 1 − ( )2 ,

162 74
5 

= 0.073 ≥ 
72 

(f) For a single observation x of X, the MAP estimate is not unique since all possible values 
of Y for this x are equally likely. Therefore, the MAP estimator does not give meaningful 
results. 

2.	 (a) X is a binomial random variable with parameters n = 3 and given the probability p that a 
single bit is flipped in a transmission over the noisy channel: 

(

3
) 
pk(1 − p)3−k , k = 0, 1, 2, 3 

pX (k; p) = k 
0 o.w. 

(b) To derive the ML estimator for p based on X1, . . . , Xn, the numbers of bits flipped in the 
first n three-bit messages, we need to find the value of p that maximizes the likelihood 
function: 

p̂n = arg maxp pX1,...,Xn (k1, k2, . . . , kn; p) 

Since the Xi’s are independent, the likelihood function simplifies to: 
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3 
pX1,...,Xn (k1, k2, . . . , kn; p) = Πi

n 
=1pXi (ki; p) = Πi

n 
=1 p ki (1 − p)3−ki 

ki 

The log-likelihood function is given by 

n 
∑ 3 

log(pX1,...,Xn (k1, k2, . . . , kn; p)) = kilog(p) + (3 − ki)log(1 − p) + log 
kii=1 

We then maximize the log-likelihood function with respect to p: 

1 

p 

( 
n 
∑ 

i=1 

ki 

) 

− 
1 

1 − p 

( 
n 
∑ 

i=1 

(3 − ki) 

) 

( 

3n − 
n 
∑ 

i=1 

ki 

) 

p 

p̂n = 
1 

3n 

n 
∑ 

i=1 

ki 

= 

= 

0 

( 
n 
∑ 

i=1 

ki 

) 

(1 − p) 

This yields the ML estimator: 

n 

P̂n =
1 ∑ 

Xi
3n 

i=1 

(c) The estimator is unbiased since: 

1 n 

Ep[P̂n] = Ep[Xi]
3n 

i=1 
n1 ∑ 

= 3p
3n 

i=1 
= p 

n(d) By the weak law of large numbers, 
n 
1 

i=1 Xi converges in probability to Ep[Xi] = 3p, and 

therefore P̂n = 
3

1 
n 

n
i=1 Xi converges in probability to p. Thus P̂n is consistent. 

(e) Sending 3 bit messages instead of 1 bit messages does not affect the ML estimate of p. To 
see this, let Yi be a Bernoulli RV which takes the value 1 if the ith bit is flipped (with 
probability p), and let m = 3n be the total number of bits sent over the channel. The ML 
estimate of p is then 

n m 

P̂n =
1 ∑ 1 ∑ 

Xi = Yi. 
3n m 

i=1 i=1 

Using the central limit theorem, P̂n is approximately a normal RV for large n. An approxi
mate 95% confidence interval for p is then, 

P̂n − 1.96 
v v 

, P̂n + 1.96 
m m 
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where v is the variance of Yi.

As suggested by the question, we estimate the unknown variance v by the convervative

upper bound of 1/4. We are also give that n = 100 and the number of bits flipped is 20,

yielding P̂n = 2
 . Thus, an approximate 95% confidence interval is [0.01, 0.123]. 

30 

(f) Other estimates for the variance are the sample variance and the estimate P̂n(1− P̂n). They 
potentially result in narrower confidence intervals than the conservative variance estimate 
used in part (e). 
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