Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Tutorial 10 Solutions
 November 18/19, 2010

1. Note that n is deterministic and H is a random variable.
(a) Use X_{1}, X_{2}, \ldots to denote the (random) measured heights.

$$
\begin{aligned}
H & =\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \\
\mathbf{E}[H] & =\frac{\mathbf{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{n \mathbf{E}[X]}{n}=h \\
\sigma_{H} & =\sqrt{\operatorname{var}(H)}=\sqrt{\frac{n \operatorname{var}(X)}{n^{2}}} \\
& =\frac{1.5}{\sqrt{n}}
\end{aligned}
$$

(b) We solve $\frac{1.5}{\sqrt{n}}<0.01$ for n to obtain $n>22500$.
(c) Apply the Chebyshev inequality to H with $\mathbf{E}[H]$ and $\operatorname{var}(H)$ from part (a):

$$
\begin{aligned}
& \mathbf{P}(|H-h| \geq t) \leq\left(\frac{\sigma_{H}}{t}\right)^{2} \\
& \mathbf{P}(|H-h|<t) \geq 1-\left(\frac{\sigma_{H}}{t}\right)^{2}
\end{aligned}
$$

To be " 99% sure" we require the latter probability to be at least 0.99 . Thus we solve

$$
1-\left(\frac{\sigma_{H}}{t}\right)^{2} \geq 0.99
$$

with $t=0.05$ and $\sigma_{H}=\frac{1.5}{\sqrt{n}}$ to obtain

$$
n \geq\left(\frac{1.5}{0.05}\right)^{2} \frac{1}{0.01}=90000
$$

(d) Intuitively, the variance of a random variable X that takes values in the range $[0, b]$ is maximum when X takes the value 0 with probability 0.5 and the value b with probability 0.5 , in which case the variance of X is $b^{2} / 4$ and its standard deviation is $b / 2$.

More formally, since $\mathbf{E}\left[(X-c)^{2}\right]$ is minimized when $c=\mathbf{E}[X]$, we have for any random variable X taking values in $[0, b]$,

$$
\begin{aligned}
\operatorname{var}(X) & \leq \mathbf{E}\left[\left(X-\frac{b}{2}\right)^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-b \mathbf{E}[X]+\frac{b^{2}}{4} \\
& =\mathbf{E}[X(X-b)]+\frac{b^{2}}{4} \\
& \leq 0+\frac{b^{2}}{4}
\end{aligned}
$$

since $0 \leq X \leq b \Rightarrow X(X-b) \leq 0$. Thus $\sigma_{X} \leq b / 2$.
In our example, we have $b=3$, so $\sigma_{X} \leq 3 / 2$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
2. (a) Setting $s=1$, we get $t_{1}=0$ and

$$
\begin{aligned}
t_{2} & =1+\sum_{j=1}^{m} p_{i j} t_{j} \quad \forall i \neq s, \\
& =1+p_{22} t_{2} \\
& \Rightarrow t_{2}=5 / 3
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t_{s}^{*}=1+\sum_{j=1}^{m} p_{s j} t_{j} \\
& t_{1}^{*}=1+p_{12} t_{2}=4 / 3
\end{aligned}
$$

3. (a) $K=2+X_{1}+X_{2}$, where X_{1} and X_{2} are independent exponential random variables with parameters $2 / 3$ and $3 / 5$.

$$
\begin{aligned}
E[K] & =2+1 / p_{1}+1 / p_{2} \\
& =31 / 6 \\
\operatorname{var}(K) & =\frac{1-p_{1}}{p_{1}^{2}}+\frac{1-p_{2}}{p_{2}^{2}} \\
& =67 / 36
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathbf{P}(A) & =\mathbf{P}\left(X_{999} \neq X_{1000} \neq X_{1001}\right) \\
& =\sum_{i=1}^{4} \mathbf{P}\left(A \mid X_{999}=i\right) \pi_{i} \\
& =2 / 3 \pi_{1}+2 / 3 \pi_{2}+3 / 5 \pi_{3}+3 / 5 \pi_{4} \\
& =30 / 93+48 / 155 \approx 0.6323
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

