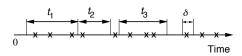
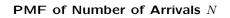
LECTURE 14 Bernoulli review • Discrete time; success probability p The Poisson process • Number of arrivals in *n* time slots: • Readings: Start Section 6.2. binomial pmf • Interarrival times: geometric pmf Lecture outline • Time to k arrivals: Pascal pmf • Review of Bernoulli process • Memorylessness • Definition of Poisson process • Distribution of number of arrivals • Distribution of interarrival times • Other properties of the Poisson process

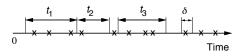


- Time homogeneity:
 P(k, τ) = Prob. of k arrivals in interval of duration τ
- Numbers of arrivals in disjoint time intervals are **independent**
- Small interval probabilities: For VERY small δ:

$$P(k,\delta) \approx \begin{cases} 1 - \lambda \delta, & \text{if } k = 0;\\ \lambda \delta, & \text{if } k = 1;\\ 0, & \text{if } k > 1. \end{cases}$$

- λ : "arrival rate"





- Finely discretize [0, t]: approximately Bernoulli
- N_t (of discrete approximation): binomial
- Taking $\delta \to 0$ (or $n \to \infty$) gives:

$$P(k,\tau) = \frac{(\lambda\tau)^k e^{-\lambda\tau}}{k!}, \qquad k = 0, 1, \dots$$

• $\mathbf{E}[N_t] = \lambda t$, $\operatorname{var}(N_t) = \lambda t$

Example

- You get email according to a Poisson process at a rate of $\lambda = 5$ messages per hour. You check your email every thirty minutes.
- Prob(no new messages) =
- Prob(one new message) =

Interarrival Times

- Y_k time of kth arrival
- Erlang distribution:

$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \qquad y \ge 0$$

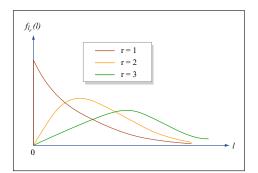
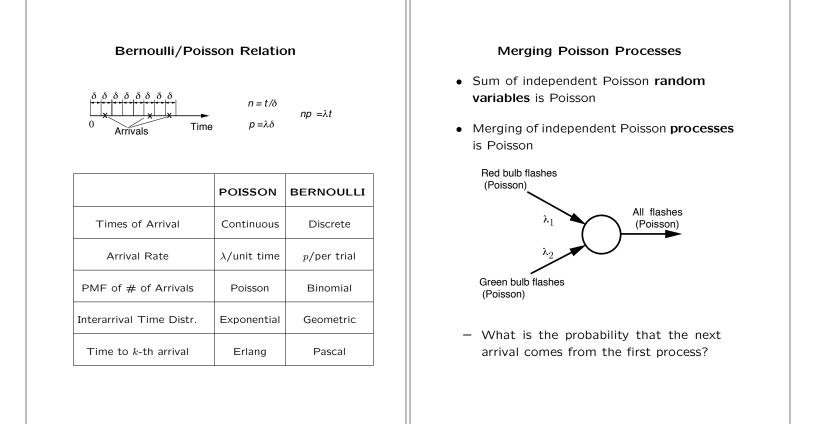


Image by MIT OpenCourseWare.

- Time of first arrival (k = 1): exponential: $f_{Y_1}(y) = \lambda e^{-\lambda y}, y \ge 0$
- Memoryless property: The time to the next arrival is independent of the past



6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.