LECTURE 14

The Poisson process

- Readings: Start Section 6.2.

Lecture outline

- Review of Bernoulli process
- Definition of Poisson process
- Distribution of number of arrivals
- Distribution of interarrival times
- Other properties of the Poisson process
- Discrete time; success probability p
- Number of arrivals in n time slots: binomial pmf
- Interarrival times: geometric pmf
- Time to k arrivals: Pascal pmf
- Memorylessness

Definition of the Poisson process

- Time homogeneity:
$P(k, \tau)=$ Prob. of k arrivals in interval of duration τ
- Numbers of arrivals in disjoint time intervals are independent
- Small interval probabilities:

For VERY small δ :

$$
P(k, \delta) \approx \begin{cases}1-\lambda \delta, & \text { if } k=0 \\ \lambda \delta, & \text { if } k=1 \\ 0, & \text { if } k>1\end{cases}
$$

- λ : "arrival rate"

PMF of Number of Arrivals N

- Finely discretize $[0, t]$: approximately Bernoulli
- N_{t} (of discrete approximation): binomial
- Taking $\delta \rightarrow 0$ (or $n \rightarrow \infty$) gives:

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

- $\mathrm{E}\left[N_{t}\right]=\lambda t$,
$\operatorname{var}\left(N_{t}\right)=\lambda t$

Example

- You get email according to a Poisson process at a rate of $\lambda=5$ messages per hour. You check your email every thirty minutes.
- Prob(no new messages) $=$
- Prob(one new message) $=$

Interarrival Times

- Y_{k} time of k th arrival
- Erlang distribution:

$$
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0
$$

Image by MIT OpenCourseWare.

- Time of first arrival $(k=1)$:
exponential: $\quad f_{Y_{1}}(y)=\lambda e^{-\lambda y}, \quad y \geq 0$
- Memoryless property: The time to the next arrival is independent of the past

Bernoulli/Poisson Relation

$n=t / \delta$
$p=\lambda \delta \quad n p=\lambda t$

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	$\lambda /$ unit time	$p /$ per trial
PMF of \# of Arrivals	Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k-th arrival	Erlang	Pascal

Merging Poisson Processes

- Sum of independent Poisson random variables is Poisson
- Merging of independent Poisson processes is Poisson

- What is the probability that the next arrival comes from the first process?

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

