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1. Consider n independent tosses of a k-sided fair die. Let Xi be the number of tosses that result
in i. Show that X1 and X2 are negatively correlated (i.e., a large number of ones suggests a
smaller number of twos).

2. Oscar’s dog has, yet again, run away from him. But, this time, Oscar will be using modern
technology to aid him in his search: Oscar uses his pocket GPS device to help him pinpoint
the distance between him and his dog, X miles.

The reported distance has a noise component, and since Oscar bought a cheap GPS device
the noise is quite significant. The measurement that Oscar reads on his display is random
variable

Y = X + W (in miles),

where W is independent of X and has the uniform distribution on [−1, 1].

Having knowledge of the distribution of X lets Oscar do better than just use Y as his guess of
the distance to the dog. Oscar somehow knows that X is a random variable with the uniform
distribution on [5, 10].

(a) Determine an estimator g(Y ) of X that minimizes E[(X − g(Y ))2] for all possible mea-
surement values Y = y. Provide a plot of this optimal estimator as a function of y.

(b) Determine the linear least squares estimator of X based on Y . Plot this estimator
and compare it with the estimator from part (a). (For comparison, just plot the two
estimators on the same graph and make some comments.)

3. (a) Given the information E[X] = 7 and var(X) = 9, use the Chebyshev inequality to find
a lower bound for P(4 ≤ X ≤ 10).

(b) Find the smallest and largest possible values of P(4 < X < 10), given the mean and
variance information from part (a).

4. Investigate whether the Chebyshev inequality is tight. That is, for every µ, σ ≥ 0, and c ≥ σ,
does there exist a random variable X with mean µ and standard deviation σ such that

P(|X − µ| ≥ c) =
σ2

c2
?
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5. Define X as the height in meters of a randomly selected Canadian, where the selection prob-
ability is equal for each Canadian, and denote E[X] by h. Bo is interested in estimating h.
Because he is sure that no Canadian is taller than 3 meters, Bo decides to use 1.5 meters as
a conservative (large) value for the standard deviation of X. To estimate h, Bo averages the
heights of n Canadians that he selects at random; he denotes this quantity by H.

(a) In terms of h and Bo’s 1.5 meter bound for the standard deviation of X, determine the
expectation and standard deviation for H.

(b) Help Bo by calculating a minimum value of n (with n > 0) such that the standard
deviation of Bo’s estimator, H, will be less than 0.01 meters.

(c) Say Bo would like to be 99% sure that his estimate is within 5 centimeters of the true
average height of Canadians. Using the Chebyshev inequality, calculate the minimum
value of n that will make Bo happy.

(d) If we agree that no Canadians are taller than three meters, why is it correct to use 1.5
meters as an upper bound on the standard deviation for X, the height of any Canadian
selected at random?

6. Let X1, X2, . . . be independent, identically distributed, continuous random variables with
E[X] = 2 and var(X) = 9. Define Yi = (0.5)iXi, i = 1, 2, . . .. Also define Tn and An to be
the sum and the average, respectively, of the terms Y1, Y2, . . . , Yn.

(a) Is Yn convergent in probability? If so, to what value? Explain.

(b) Is Tn convergent in probability? If so, to what value? Explain.

(c) Is An convergent in probability? If so, to what value? Explain.

7. There are various senses of convergence for sequences of random variables. We have defined
in lecture “convergence in probability.” In this exercise, we will define “convergence in mean
of order p.” (In the case p = 2, it is called “mean square convergence.”)

The sequence of random variables Y1, Y2, . . . is said to converge in mean of order p (p > 0)
to the real number a if

lim
n→∞

E [|Yn − a|p] = 0.

(a) Prove that convergence in mean of order p (for any given positive value of p) implies
convergence in probability.

(b) Give a counterexample that shows that the converse is not true, i.e., convergence in
probability does not imply convergence in mean of order p.

G1†. One often needs to use sample data to estimate unknown parameters of the underlying distri-
bution from which samples are drawn. Examples of underlying parameters of interest include
the mean and variance of the distribution. In this problem, we look at estimators for mean
and variance based on a set of n observations X1, X2, . . . , Xn. If needed, assume that first,
second, and fourth moment of the distribution are finite.

Denote an unknown parameter of interest by θ. An estimator is a function of the observed
sample data

θ̂(X1, X2, . . . , Xn)
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that is used to estimate θ. An estimator is a function of random samples and, hence, a random
variable itself. To simplify the notation, we drop the argument of the estimator function.

One desired property of an estimator is unbiasedness. An estimator θ̂ is said to be unbiased

when E[θ̂] = θ.

(a) Show that

µ̂ =
1

n
(X1 + · · · + Xn)

is an unbiased estimator for the true mean µ.

(b) Now suppose that the mean µ is known but the variance σ2 must be estimated from the
sample. (The more realistic situation with both µ and σ2 unknown is considered below.)
Show that

σ̂2 =
1

n

n
∑

i=1

(Xi − µ)2

is an unbiased estimator for σ2.

It is more realistic to have to estimate both µ and σ2 from the same set of n observations.
This is developed in the following parts.

(c) Use basic algebra to show that

n
∑

i=1

(Xi − µ̂)2 =

n
∑

i=1

(Xi − µ)2 − n(µ̂ − µ)2.

(d) Show that

E

[

n
∑

i=1

(Xi − µ̂)2

]

= (n − 1)σ2.

(e) What is an unbiased estimator for σ2 (using only the data sample, not µ)?

Another desired property for an estimator is asymptotic consistency. An estimator θ̂ is called
asymptotically consistent when it converges in probability to the true parameter θ as the
observation sample size n → ∞.

(f) Show that var(µ̂) = σ2/n and use this to argue that µ̂ is asymptotically consistent.

(g) Let ˆ̂σ
2

denote the unbiased estimator of σ2 you found in part (e).1 Show that

var(ˆ̂σ2) =
1

n

(

d4 −
n − 3

n − 1
µ4

)

where d4 = E[(X − µ)4]. Use this to argue that ˆ̂σ
2

is asymptotically consistent.

1Actually, there is more than one unbiased estimator of σ
2. We assume that your solution to part (e) is the one

that weights each sample equally.
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