Recitation 18 May 2, 2006

- 1. (Example 5.15) **Competing Exponentials.** Two light bulbs have independent and exponentially distributed lifetimes T_a and T_b , with parameters λ_a and λ_b , respectively. What is the distribution of $Z = \min\{T_a, T_b\}$, the first time when a bulb burns out ?
- 2. (Example 5.16) More on Competing Exponentials. Three light bulbs have independent exponentially distributed lifetimes with a common parameter λ . What is the expected value of the time until the last bulb burns out ?
- 3. (Problem 5.17a) Let X_1 and X_2 be independent and exponentially distributed, with parameters λ_1 and λ_2 , respectively. Find the expected value of max $\{X_1, X_2\}$.
- 4. (Problem 5.21) The number of Poisson arrivals during an exponentially distributed interval. Consider a Poisson process with parameter λ , and an independent random variable T, which is exponential with parameter ν . Find the PMF of the number of Poisson arrivals during the time interval [0, T].