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6.041/6.431: Probabilistic Systems Analysis 
(Spring 2006) 

Problem Set 2: Solutions 
Due: February 22, 2006 

1. Let A be the event that your friend searches disk 1 and finds nothing, and let Bi be the event 
that your thesis is on disk i. The sample space is described below. 

1-p A 
B1 

p Ac 

1/4 

1 A 
1/4 B2 

0 Ac 

1/4 
1 A 

B31/4 
0 Ac 

1 A 
B4 

0 Ac 

Note that B1, B2, B3, and B4 partition the sample space, so applying Bayes’ rule, we have 

P (Bi)P (A | Bi)
P (Bi | A) =  

P (B1)P (A | B1) +  P (B2)P (A | B2) +  P (B3)P (A | B3) +  P (B4)P (A | B4) 
1P (A | Bi)= 4

1 
4 ((1 − p) + 1 + 1 + 1) 


P (A | Bi)
= 
4 − p 

(1 − p)/(4 − p) for  i = 1,
= 

1/(4 − p)  for  i = 2, 3, 4. 

2. Define the following events:	 B1: Bo submits his entry first. 
C1: Ci submits his entry first. 
BW : Bo’s entry wins. 
CW : Ci’s entry wins. 
BNW : Bo’s entry does not win. 
CNW : Ci’s entry does not win. 
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0.7 

0.3 
C1 

B1 
0.7 

0.3 

BNW 

BW 

0.6 

0.4 

CW 

CNW 

0.6 

0.4 

0.3 

0.7 BNW 

BW 

CNW 

CW 

B1, BW (0.21) 

B1, CW (0.294) 

B1, NW (0.196) 

C1, CW (0.18) 

C1, BW (0.036) 

C1, NW (0.084) 

c)b)a) 

NW BW 

d) 

B1,BWC1,BW BW 

0.036 0.21 

C1,CW 

0.180.2460.28 0.246 

a) P (prize is not awarded) = 0.196 + 0.084 = 0.28 . 

b) P (Bo will win) = 0.21 + 0.036 = 0.246 . 

c) P (Ci’s entry arrived first|Bo wins) = P (C1, BW )/P (BW ) = 0.036/0.246 = 

d) P (First entry wins contest) = P (B1, BW  ) +  P (C1, CW  ) = 0.21 + 0.18 = 

0.1463 . 

0.39 . 

e) Defining A to be the event “First entry wins” and B to be the event “Second entry does 
not win” and modifying the above figure as follows: 

e) 

ABB 

C1 

B1 
0.7 

0.3 

BNW 

BW 

0.6 

0.4 

CW 

CNW 

0.6 

0.4 

0.3 

0.7 BNW 

BW 

CNW 

CW 

A 

1-P 

P 

B1, CW (0.42P) 

B1, BW (0.3P) 

B1, NW (0.28P) 

C1, CW (0.6(1-P)) 

C1, BW (0.12(1-P)) 

C1, NW (0.28(1-P)) 

0.6-0.3P 0.88-0.3P 0.6-0.3P 

We see that since P (B) is not equal to 1 for any value of P , there is no value of P for which 
P (A)P (B) =  P (AB). Thus events A and B are never independent. 

3. (a) The tree representation during the winter can be drawn as the following: 
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The forecast is 
"Rain" 

The forecast is 

"No Rain" 

Rain 

No Rain 

Rain 

No Rain 

1-p 

0.2 

0.1 

0.9 

0.8 

p 

Let A be the event that the forecast was “Rain”,

Let B be the event that it rained, Let p be the probability that the forecast says “Rain”,

If it is in the winter, p = 0.7,


P (A | B) =  
P (B | A)P (A) (0.8)(0.7) 

=
56 

= 
P (B) (0.8)(0.7) + (0.1)(0.3) 59 

Similarly, if it is in the summer, p = 0.2, 

P (A | B) =  
P (B | A)P (A) (0.8)(0.2) 

=
2 

= 
P (B) (0.8)(0.2) + (0.1)(0.8) 3 

(b) Let C be the event that Victor is carrying an umbrella. 
Let D be the event that the forecast is no rain. 
The tree diagram in this case is: 

Umbrella 

0.2 

Missed the forecast

Saw the forecast 

0.5

0.5

1-p

p 

No umbrella 

Rain (umbrella)
0.8 

No Rain (no umbrella) 

P (D) = 1  − p 

P (C) = (0.8)p + (0.2)(0.5) = 0.8p + 0.1 
P (C | D) = (0.8)(0) + (0.2)(0.5) = 0.1 

Therefore, P (C) =  P (C | D) if and only if p = 0. However, p can only be 0.7 or 0.2, 
which implies the event C and D can never be independent, and this result does not 
depend on the season. 
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(c) Let us first find the probability of rainning if Victor missed the forecast. 

P (actually rains | missed forecast) = (0.8)p + (0.1)(1 − p) = 0.1 + 0.7p. 

Then, we can extend the tree in part b) as follows, 

0.8 

Missed the forecast 

Saw the forecast 

0.2 
No umbrella 

Umbrella0.5 

0.5 

1-p 

p Rain (umbrella) 

No Rain (no umbrella) 

Actually rain 

Actually rain 

Actually rain 

Actually rain 

Actually no rain 

Actually no rain 

Actually no rain 

Actually no rain0.9-0.7p 

0.9-0.7p 

0.1+0.7p 

0.1+0.7p 

0.1 

0.9 

0.8 

0.2 

Therefore, given that Victor is carrying an umbrella and it is not raining, we are looking 
at the two shaded cases. 

P (saw forecast | umbrella and not raining) 
(0.8)p(0.2)

= 
(0.8)p(0.2) + (0.2)(0.5)(0.9 − 0.7p) 

112In fall and winter, p = 0.7, Probability = 153 
In summer and spring, p = 0.2 Probability = 8 

27 

4. Without prior bias on whether the exit of campus lies East or West, the exact answers of 
the passerby are not as important as whether a string of answers is similar or not. Let Rr 

denote the event that we receive r similar answers and T denote the event that these repeated 
answers are truthful. Let S denote the event that the questioned passerby is a student. Note 
that, because a professor always gives a false answer, T ∩ Sc = ∅ and thus P(T ∩ Sc) = 0.  
Therefore, 

P(T |Rr) =  
P(T ∩ Rr) 

P(Rr) 
= 

P(T ∩ Rr ∩ S) 
P(Rr) 

= 
P(T ∩ Rr|S)P(S) 

P(Rr) ( )r 
where the stated independence of a passerby’s successive answers implies P(T ∩Rr|S) =  
Applying the Total Probability Theorem and again making use of independence, we also 

3 
4 . 

deduce (( ) ( ) )
3 r 1 r 2 1

P(Rr) =  P(Rr|S)P(S) +  P(Rr|Sc)P(Sc) =  + ︸ ︷︷ ︸ 4 4 3
+

3 
. 

1 

(a) Applying the above formulas for r = 1,  we  have  P(R1) = 1 and thus 

13 2· 
P(T |R1) = 34 = .

21 
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(b) For r = 2, the formulas yield P(R2) = 3 
4 and thus )2

3 2
1 

= 
2 

. 
3 

3 
4 

4
P(T |R2) =  

(c) For r = 3, the formulas yield P(R3) =  15 and thus 24 )3
3 2

9 
= 34

P(T |R3) =  .
2015 

24 

(d) For r = 4, the formulas yield P(R4) =  35 and thus 64 )4
3 2

27 
70 

(e) As soon as we receive a dissimilar answer from the same passerby, we know that this 
passerby is a student; a professor will always give the same (false) answer. Let D denote 
the event of receiving the first dissimilar answer. Given D on the fourth answer, either 
the student has provided three truthful answers followed by one untruthful answer, 

34
P(T |R4) =  = .35 

64 

)3
3 1occurring with probability , or the student has provided three untruthful answers 44 )3

1 3followed by one truthful answer, occurring with probability . Note that event T44 

corresponds to the former; thus, )3
3 1

9 
= 44

P(T |R3 ∩ D) =  .
10)3 )3

3 1 1 3+
44 44 

In parts (a) - (d), notice the decreasing trend in the probability of the passer-by being truthful 
as the number of similar answers grows. Intuitively, our confidence that the passerby is a 
professor grows as the sequence of similar answers gets longer, because we know a professor 
will always give the same (false) answer while a student has a chance to answer either way. 
However, as part (e) demonstrates, the first indication that the passerby is a student will 
boost our confidence that the previous string of similar answers are truthful, because any 
single answer by the student has a 3-to-1 chance of being a truthful one. 

For the remainder of this problem, let E and W represent the events that a passerby provides 
East and West, respectively, as an answer and let TE represent the event that East is the 
correct answer. We are told Ima’s a-priori bias is P(TE) =  ε. 

(f) Using Bayes’s Rule and all the arguments used in parts (a) - (e), we have 

P(TE |E) =  
P(E|TE)P(TE) 

P(E) 

3 
4 

2 
3 ( ) ( ) (( ) ( ) ) = = ε and 

32 
43 ε +
 12 

43 +
1 3 (1 − ε) (( ) ( ) ) 
12 1+ 

P(TE |W ) =  
P(W |TE)P(TE) 

= 
P(W ) 

43 3 
ε .
(( ) ( ) ) ( ) ( ) = 

12 + ε + 32 
43 (1 − ε)
43 
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In particular, we have used that P(E) = P(E|TE)P(TE)+P(E|T c
E)P(T c

E) (and similarly
for P(W ))

(g) Likewise, given two consecutive and similar answers from the same passerby, we have

P(TE |EE) =

(
2
3

) (
3
4

)2
ε(

2
3

) (
3
4

)2
ε +

((
2
3

) (
1
4

)2
+ 1

3

)
(1 − ε)

= ε and

P(TE |WW ) =

((
2
3

) (
1
4

)2
+ 1

3

)
ε((

2
3

) (
1
4

)2
+ 1

3

)
ε +

(
2
3

) (
3
4

)2
(1 − ε)

= ε .

(h) Finally, given three consecutive and similar answers from the same passerby,

P(TE |EEE) =

(
2
3

) (
3
4

)3
ε(

2
3

) (
3
4

)3
ε +

((
2
3

) (
1
4

)3
+ 1

3

)
(1 − ε)

=
9ε

11 − 2ε
and

P(TE |WWW ) =

((
2
3

) (
1
4

)3
+ 1

3

)
ε((

2
3

) (
1
4

)3
+ 1

3

)
ε +

(
2
3

) (
3
4

)3
(1 − ε)

=
11ε

9 + 2ε
.

For ε = 9
20 , we calculate P(TE |EEE) = 81

202 and P(TE |WWW ) = 1
2 .

Notice that the E, EE and EEE answers to parts (f) - (h) match the answers to parts (a)-(c)
when ε = 1

2 , or when Ima’s prior bias does not favor either possibility.

G1†. Through the first n coins, Alice and Bob are equally likely to have flipped the same number
of heads as the other (since they are using fair coins and each flip is independent of the other
flips). Given this, when Bob flips his last coin but Alice doesn’t flip a coin, Bob has a 1/2
chance of getting a head and thus having more heads than Alice.

Alice

Bob

Number of Coins

Flipped

n+1n

Let’s look at it another way. First define the following events:
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1) A = the number of heads Alice tossed 2) B = the number of heads Bob tossed

Now suppose both Bob and Alice toss n coins. A sample space of interst is shown below
where the shaded area represents Alice having more heads than Bob and the unshaded and
uncrossed area represents Bob having more heads than Alice.
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N
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 H
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. . . n

. . .

n

Bob’s Number of Heads
0 1 2

0

1

2

Since each coin is fair and each toss is independent of all the other tosses, each box in the
diagram has an equal amount of probabilistic weight. We wish to show that

P (B > A) = P (A > B)

Well, each box has the same weight and there are the same number of boxes on each side
of the diagonal. Consequently the above equation holds, meaning Alice and Bob are equally
likely to have flipped more heads than the other. Furthermore, Alice and Bob are equally
likely to have flipped the same number of heads, again since each box with an x in it has the
same probabilistic weight.

Now Bob picks up the last coin. Given that both Alice and Bob are equally likely to have
the same number of heads, the event Bob having more heads than Alice boils down to Bob
getting a head on the last coin flip. Since this coin is fair and the flip is independent of past
flips, this probability is simply 1/2.

An alternative solution is shown as follows,
Let B be the event that Bob tossed more heads,
let X be the event that after each has tossed n of their coins, Bob has more heads than Alice,
let Y be the event that under the same conditions, Alice has more heads than Bob,
and let Z be the event that they have the same number of heads.
Since the coins are fair, we have P (X) = P (Y ), and also P (Z) = 1−P (X)−P (Y ). Further-
more, we see that

P (B | X) = 1, P (B | Y ) = 0, P (B | Z) =
1
2
.

Now we have, using the theorem of total probability,

P (B) = P (X) · P (B | X) + P (Y ) · P (B | Y ) + P (Z) · P (B | Z)
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= P (X) +
1
2
· P (Z)

=
1
2
· (P (X) + P (Y ) + P (Z))

=
1
2

as required.

†Required for 6.431; optional for 6.041 Page 8 of 8


