Massachusetts Institute of Technology Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

Problem Set 3 Due: March 1, 2006

1. Mary and Tom park their cars in an empty parking lot that consists of N parking spaces in a row. Assume that each possible pair of parking locations is equally likely. Calculate the probability that the parking spaces they select are adjacent.
2. Two fair, three-sided dice ${ }^{1}$ are rolled simultaneously.
(a) Let X be the sum of the two rolls. Calculate the PMF, the expected value, and the variance of X.
(b) As a gambling game, you pay a dollars in advance and get paid $5 X$, with X defined as in part (a). What value of a makes it a fair game, i.e., one in which you break even on average?
(c) Repeat parts (a) and (b) for the case where X is the square of the sum of the two rolls.
3. Consider another game played with dice. Each of two players rolls a fair, four-sided die. Player A scores the maximum of the two dice minus 1 , which is denoted X. Player B scores the minimum of the two dice, which is denoted Y.
(a) Find the expectations of X, Y, and $X-Y$.
(b) Find the variances of X, Y, and $X-Y$.
4. Suppose wish to estimate a random variable X by some constant \hat{x}. There are many ways to measure how good of an estimate \hat{x} is. Here you will derive an important property of minimum mean-squared error estimation
Define the mean-squared estimation erroby

$$
e(\hat{x})=\mathbf{E}\left[(X-\hat{x})^{2}\right]
$$

(This is a deterministic function of the real variable \hat{x}.) Show that $e(\hat{x})$ is minimized by $\hat{x}=\mathbf{E}[X]$.
5. Random variables X and Y have the joint PMF

$$
p_{X, Y}(x, y)= \begin{cases}c x y, & x \in\{1,2,4\} \quad \text { and } \quad y \in\{1,3\} \\ 0, & \text { otherwise } .\end{cases}
$$

(a) What is the value of the constant c ?
(b) What is $\mathbf{P}(Y<X)$?
(c) What is $\mathbf{P}(Y>X)$?
(d) What is $\mathbf{P}(Y=X)$?
(e) What is $\mathbf{P}(Y=3)$?

[^0]
Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
(f) Find the marginal PMFs $p_{X}(x)$ and $p_{Y}(y)$.
(g) Find the expectations $\mathbf{E}[X]$ and $\mathbf{E}[Y]$.
(h) Find the variances $\operatorname{var}(X)$ and $\operatorname{var}(Y)$.

G1 ${ }^{\dagger}$. The Cauchy-Schwarz inequality tells us that for two vectors v and w in an inner product space,

$$
|\langle v, w\rangle| \leq\|v\| \cdot\|w\|
$$

with equality if and only if one vector is a constant multiple of the other.
Prove the analogue of the Cauchy-Schwartz inequality for random variables:

$$
|\mathbf{E}[X Y]| \leq \sqrt{\mathbf{E}\left[X^{2}\right]} \sqrt{\mathbf{E}\left[Y^{2}\right]}
$$

This is consistent with the fact that one can define vector spaces of random variables. Hint: Use the fact that $\mathbf{E}\left[(\alpha X+Y)^{2}\right]$ must be nonnegative for all real constants α.

[^0]: ${ }^{1}$ With coins and dice, "fair" means that all outcomes are equally likely. Unless otherwise indicated, an n-sided die has faces labeled $1,2, \ldots, n$ One can't really build a three-sided die, but it is nevertheless a well-defined probabilistic model.

