Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

Tutorial
 March 9-10, 2006

1. Consider the two-sided exponential PDF

$$
f_{X}(x)= \begin{cases}p \lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ (1-p) \lambda e^{\lambda x}, & \text { if } x<0\end{cases}
$$

where λ and p are scalars with $\lambda>0$ and $p \in[0,1]$. Find the mean and the variance of X.
2. A signal $s=2$ is transmitted from a satellite but is corrupted by noise, so that the received signal is $X=s+W$. When the weather is good, which happens with probability $2 / 3, W$ is normal with zero mean and variance 1 . When the weather is bad, W is normal with zero mean and variance 9. In the absence of any weather information, find the PDF of X and calculate the probability that X is between 1 and 3 . (Express the probability using the standard normal CDF Φ.)
3. Beginning at time $t=0$ we begin using bulbs, one at a time, to illuminate a room. Bulbs are replaced immediately upon failure. Each new bulb is selected independently by an equally likely choice between a Type-A bulb and a Type-B bulb.

The lifetime, X, of any particular bulb of a particular type is an independent random variable with the following PDF:

$$
\begin{array}{ll}
\text { For Type-A Bulbs: } & f_{X}(x)= \begin{cases}e^{-x} & x \geq 0 \\
0 & \text { elsewhere }\end{cases} \\
\text { For Type-B Bulbs: } & f_{X}(x)= \begin{cases}3 e^{-3 x} & x \geq 0 \\
0 & \text { elsewhere }\end{cases}
\end{array}
$$

(a) Find the expected time until the first failure.
(b) Find $\mathbf{P}(D)$, the probability that there are no bulb failures during the first τ hours of this process.
(c) Given that there are no failures during the first τ hours of this process, determine $\mathbf{P}\left(T_{1 A} \mid D\right)$, the conditional probability that the first bulb used is a Type-A bulb.
(d) Given that there are no failures during the first τ hours of this process, determine the total expected time until the first failure (i.e., the expected time elapsed from $t=0$ until the first bulb fails).

