Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Recitation 11 Solutions

April 3, 2006

1. Let P be the random variable for the value drawn according to the uniform distribution in interval $[0,1]$ and let X be the number of successes in k trials. Given $P=p, X$ is a binomial random variable:

$$
p_{X \mid P}(x \mid p)= \begin{cases}\binom{k}{x} p^{x}(1-p)^{k-x} & x=0,1, \ldots, k \\ 0 & \text { otherwise }\end{cases}
$$

From the properties of a binomial r.v. we know that $E[X \mid P=p]=k p$, and $\operatorname{Var}(X \mid P=p)=$ $k p(1-p)$. So,

$$
\begin{aligned}
E\left[X^{2} \mid P=p\right]-(E[X \mid P=p])^{2} & =k p(1-p) \\
E\left[X^{2} \mid P=p\right]-(k p)^{2} & =k p(1-p) \\
E\left[X^{2} \mid P=p\right] & =k p(1-p)+(k p)^{2} .
\end{aligned}
$$

Let's find $E[X]$ using the iterated expectation law:

$$
\begin{aligned}
E[X] & =E[E[X \mid P]] \\
& =E[k P] \\
& =k E[P] \\
& =\frac{k}{2}
\end{aligned}
$$

Now let's find $\operatorname{var}(X)$ using the law of total variance:

$$
\begin{aligned}
\operatorname{var}(X) & =E[\operatorname{var}(X \mid P)]+\operatorname{var}(E[X \mid P]) \\
& =E[k P(1-P)]+\operatorname{var}(k P) \\
& =k\left(E[P]-E\left[P^{2}\right]\right)+k^{2} \operatorname{var}(P) \\
& =k\left[\frac{1}{2}-\left(\frac{1}{12}+14\right)\right]+k^{2} \frac{1}{12} \\
& =\frac{k}{6}+\frac{k^{2}}{12}
\end{aligned}
$$

Therefore the variance is: $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{k}{6}+\frac{k^{2}}{12}$.

Note that if we had just taken the expected value of the conditional variance $k P(1-P)$, we would have obtained $\frac{k}{6}$, which misses the other term in the total variance formula, namely the variance of the conditional mean, i.e, the variance of $k P$, which is $\frac{k^{2}}{12}$.
2. Define the following events and RVs:
$W=$ number of hours Oscar works in a week,
$T=$ total amount of Oscar's earnings in a week (including overtime and bonus).
Now, We want to find $\mathbf{E}[T]$ and $\operatorname{Var}(T)$.

From the tree diagram, we use total expectation theorem,

$$
\mathbf{E}[T]=\sum_{i=1}^{7} \mathbf{P}\left(A_{i}\right) \mathbf{E}\left[T \mid A_{i}\right]
$$

Note that $\left\{A_{1}, A_{2}, \ldots, A_{7}\right\}$ is mutually exclusive and collectively exhaustive.
For each A_{i}, the conditional PDF $f_{T \mid A_{i}}(t)$ is constant because any linear function $a X+b$ of a uniformly distributed RV X is also uniformly distributed. Therefore,

$$
\begin{array}{rll}
f_{T \mid A_{1}}(t) & =\frac{1}{50} & \text { for } 0 \leq t \leq 50 \\
f_{T \mid A_{2}}(t) & =\frac{1}{25} & \text { for } 50<t \leq 75 \\
f_{T \backslash A_{3}}(t) & =\frac{1}{50} & \text { for } 50<t \leq 100 \\
f_{T \mid A_{4}}(t) & =\frac{1}{25} & \text { for } 175<t \leq 200 \\
f_{T \mid A_{5}}(t) & =\frac{1}{25} & \text { for } 75<t \leq 100 \\
f_{T \backslash A_{6}}(t) & =\frac{1}{50} & \text { for } 200<t \leq 250 \\
f_{T \mid A_{7}}(t) & =\frac{1}{50} & \text { for } 100<t \leq 150
\end{array}
$$

and

$$
\begin{array}{rll}
\mathbf{E}\left[T \mid A_{1}\right] & =25 & \mathbf{E}\left[T \mid A_{2}\right]=\frac{125}{2} \\
\mathbf{E}\left[T \mid A_{3}\right] & =75 & \\
\mathbf{E}\left[T \mid A_{4}\right]=\frac{375}{2} \\
\mathbf{E}\left[T \mid A_{5}\right] & =\frac{175}{2} & \\
\mathbf{E}\left[T \mid A_{6}\right]=225 \\
\hline 125 . & &
\end{array}
$$

Using the total expectation theorem, the expected salary per week is then equal to

$$
\mathbf{E}[T]=\frac{1}{2} \cdot 25+\frac{1}{8} \cdot \frac{125}{2}+\frac{1}{8} \cdot 75+\frac{1}{16} \cdot \frac{375}{2}+\frac{1}{16} \cdot \frac{175}{2}+\frac{1}{16} \cdot 225+\frac{1}{16} \cdot 125=68.75 .
$$

For the variance of T, we need to first find $\mathbf{E}\left[T^{2}\right]$.

$$
\mathbf{E}\left[T^{2}\right]=\sum_{i=1}^{7} \mathbf{P}\left(A_{i}\right) \mathbf{E}\left[T^{2} \mid A_{i}\right] .
$$

Using the fact that $\mathbf{E}\left[X^{2}\right]=\left(a^{2}+a b+b^{2}\right) / 3=\left((a+b)^{2}-a b\right) / 3$ for any uniformly distributed RV X ranging from a to b, we obtain

$$
\begin{array}{lll}
\mathbf{E}\left[T^{2} \mid A_{1}\right]= & 50^{2} / 3 & \mathbf{E}\left[T^{2} \mid A_{2}\right]=\left(125^{2}-50 \cdot 75\right) / 3 \\
\mathbf{E}\left[T^{2} \mid A_{3}\right]=\left(150^{2}-50 \cdot 100\right) / 3 & \mathbf{E}\left[T^{2} \mid A_{4}\right]=\left(375^{2}-175 \cdot 200\right) / 3 \\
\mathbf{E}\left[T^{2} \mid A_{5}\right] & =\left(175^{2}-75 \cdot 100\right) / 3 & \mathbf{E}\left[T^{2} \mid A_{6}\right]=\left(450^{2}-200 \cdot 250\right) / 3 \\
\mathbf{E}\left[T^{2} \mid A_{7}\right] & =\left(250^{2}-100 \cdot 150\right) / 3 . &
\end{array}
$$

Therefore,

$$
\begin{gathered}
\mathbf{E}\left[T^{2}\right]=\frac{1}{2} \frac{2500}{3}+\frac{1}{8} \frac{11875}{3}+\frac{1}{8} \frac{17500}{3}+\frac{1}{16} \frac{105625}{3}+\frac{1}{16} \frac{23125}{3}+\frac{1}{16} \frac{152500}{3}+\frac{1}{16} \frac{47500}{3}=\frac{101875}{12} . \\
\operatorname{Var}(T)=\mathbf{E}\left[T^{2}\right]-(\mathbf{E}[T])^{2}=\frac{180625}{48} \approx 3763 .
\end{gathered}
$$

