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1. For this problem we will need to compute the 1st, 2nd, 3rd, and 4th moments of the standard 
normal distribution. To facilitate this, we will find the moment generating function: 
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the second equality above following from completing the square in the exponent, and the third 
following because the gaussian density function integrates to 1. Therefore we now take derivatives 
w.r.t. r, and easily find the first four moments: 

E[X] = 0, E[X2] = 1, E[X3] = 0, E[X4] = 3. 

We know that the correlation coefficient is given by: 

Cov(X, Y )
ρ(X, Y ) = 

σXσY 

. 

We first compute the covariance: 

Cov(X, Y ) = 

= 

= 

E[XY ] − E[X]E[Y ] 

E[aX + bX2 + cX3] − E[X]E[Y ] 

aE[X] + bE[X2] + cE[X3] 

= b. 
� 

Now V ar(X) = 1 therefore σX = 1 so we have left to find σY = V ar(Y ). 

V ar(Y ) = V ar(a + bX + cX2) 

= E[(a + bX + cX2)2] − E[a + bX + cX2]2 

2) − (a 2 = (a 2 + 2ac + b2 + 3c + c 2 + 2ac) 
2 = b2 + 2c 

and therefore we find: 
b 

ρ(X, Y ) = . 
2

√
b2 + 2c

2.	 (a) Here we are trying to choose a g(X) that minimizes the conditional mean squared error 
E[(Y − g(X))2 X = x]. As shown in section 4.6 in the text, this estimator is g(X) =|
E[Y X = x]. |

 

1 
	 x < 1 
 2 0 ≤

1E[Y X = x] = x − 2 1 ≤ x ≤ 2|
 

 Undefined Otherwise 

A plot of g(X): 
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E[Y|X=x] 

2 

1 

1 2 x 

∗ 1(b) E[g (X)] = E[E[Y X = x]] = E[Y ], and note that fX,Y (x, y) = C = 2 . 

E[Y ] = yfX,Y (x, y)dydx 
x y 

� 1 � � 2 x 11 1 
= y dydx + y dydx 

0 0 2 1 x−1 2 
2 11 1 

= dx + (2x − 1) dx 
0 4 1 4

3 
= 

4 

∗ Var(g (X)) = Var(E[Y X = x]) = E[E[Y X]2] − (E[E[Y X]])2 | | |
� 2 

= E[Y X]2fX (x)dx − (E[Y ])2 

0 
|
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= (

1
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(x − 1)2 1 
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0 2 2 1 2 2 4
5 

= 
48 

, where we have noted that fX (x) = y fX,Y (x, y)dy = 1 for 0 ≤ x ≤ 2, and 0 otherwise. 2 
∗(c) E[(Y − g (X))2] and E[Var(Y X)] are the same thing. |

� � 

∗ E[(Y − g (X))2] = (y − E[Y X = x])2fY |X (y x)fX (x)dydx 
x y 

| |

= Var(Y X)fX (x)dx 
x 

|

= E[Var(Y X)] |

For any given value of X, fY |X (y x) is uniform. When 0 ≤ x ≤ 1, fY |X (y x) is uniform over | |
y ≤ 1, and zero otherwise. When 1 ≤ x ≤ 2, fY |X (y x) is uniform over x,0 ≤ x − 1 ≤ y ≤|

and zero otherwise. Thus, 
 

(1−0)2 = 1 
 x < 1 
 12 12 0 ≤

Var(Y |X = x) = (x−(x−1))2 = 1 
 12 12 1 ≤ x ≤ 2 
 

Undefined Otherwise 
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1 1 
E[Var(Y X)] = P (0 ≤ x < 1) + P (1 ≤ x ≤ 2) |

12 12 
1 

= [P (0 ≤ x < 1) + P (1 ≤ x ≤ 2)] 
12 

1 
= 1 ∗

12 

∗ 1Therefore, E[(Y − g (X))2] = E[Var(Y X)] = 12 |

(d) By the law of conditional variance, we have Var(Y ) = E[Var(Y X)] + Var(E[Y X]). Using | |
the answers to (b) and (c),


Var(Y ) = E[Var(Y X)] + Var(E[Y X])
|
1 5 

|
3 

= + = 
12 48 16 

Of course, you can always find fY (y) first and then calculate the variance in the usual way; 
it’s just that in this problem we happen to have both components in the sum above. 

3. (a) No. Since Xi for any i ≥ 1 is uniformly distributed between -1.0 and 1.0. 

(b) Yes, to 0. Since for ǫ > 0,


Xi

lim P( Yi − 0 > ǫ) = lim P( > ǫ) 
i→∞ 

| |
i→∞ 

|
i 

− 0|
= lim [P(Xi > iǫ) + P(Xi < −iǫ)] = 0. 

i→∞

(c) Yes, to 0. Since for ǫ > 0,


lim P( Zi − 0 > ǫ) = lim P( (Xi)
i − 0 > ǫ)


i→∞ 
| |

i→∞ 
| |

i > ǫ 
1 

i ) + P(Xi < −(ǫ) 
1 

i )] lim [P(X
i→∞

= 

1 1 

i 

1

) + (1 − ǫ 

2

1 

i )] lim [ (1 − ǫ 
i→∞ 2

= 

= 0. 

(d) No. In order for Ti to converge in probability, Ti −Ti−1 must converge to zero in probability. 
Since Ti −Ti−1 = Xi for all i, Ti −Ti−1 does not converge to zero, and therefore Ti does not 
converge in probability. 

(e) Yes, to 0. Applying weak law of large numbers, we have 

P( Ui − µ > ǫ) → 0 , for all ǫ > 0as i → ∞| |


Here µ = 0 since Xi ∼ U(−1.0, 1.0).
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(f) Yes, to 0. 

E[Vn] = 

= 

E[E[Vn|Xn]] 

E[XnE[Vn−1]] = E[Xn]E[Vn−1] = 0 

var(Vn) = 

= 

E[var(Vn|Xn)] + var(E[Vn|Xn]) 

E[X2 
nvar(Vn−1)] + var(XnE[Vn−1]) 

= E[X2 
n]var(Vn−1) + E[Vn−1]

2var(Xn) 

1 
� 

1 
�n−1 

= 
3
var(Vn−1) = 

3 
var(X1) 

Notice that as n becomes very large, var(Vn) approaches 0. By Chebyshev’s inequality, we 
know Vn approaches E[Vn] = 0 in probability. 

(g) Yes, to 1. Since for ǫ > 0, 

lim P( Wi − 1 > ǫ) ≤ lim P( > ǫ) 
i→∞ 

| |
i→∞ 

|max{X1, · · · ,Xi} − 1|
= lim [P(max{X1, · · · ,Xi} > 1 + ǫ) 

i→∞

+P(max{X1, · · · ,Xi} < 1 − ǫ)] 
ǫ 

= lim [0 + (1 − )i] 
i→∞ 2

= 0. 

Page 4 of 4



