Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Tutorial 08

April 13-14, 2006

1. For this problem we will need to compute the 1st, $2 \mathrm{nd}, 3 \mathrm{rd}$, and 4 th moments of the standard normal distribution. To facilitate this, we will find the moment generating function:

$$
\begin{aligned}
E\left[e^{r x}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{r x} \cdot e^{-\frac{1}{2} x^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{1}{2} r^{2}} \cdot \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-r)^{2}} d x \\
& =e^{\frac{1}{2} r^{2}}
\end{aligned}
$$

the second equality above following from completing the square in the exponent, and the third following because the gaussian density function integrates to 1 . Therefore we now take derivatives w.r.t. r, and easily find the first four moments:

$$
E[X]=0, E\left[X^{2}\right]=1, E\left[X^{3}\right]=0, E\left[X^{4}\right]=3 .
$$

We know that the correlation coefficient is given by:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} .
$$

We first compute the covariance:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =E\left[a X+b X^{2}+c X^{3}\right]-E[X] E[Y] \\
& =a E[X]+b E\left[X^{2}\right]+c E\left[X^{3}\right] \\
& =b .
\end{aligned}
$$

Now $\operatorname{Var}(X)=1$ therefore $\sigma_{X}=1$ so we have left to find $\sigma_{Y}=\sqrt{\operatorname{Var}(Y)}$.

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(a+b X+c X^{2}\right) \\
& =E\left[\left(a+b X+c X^{2}\right)^{2}\right]-E\left[a+b X+c X^{2}\right]^{2} \\
& =\left(a^{2}+2 a c+b^{2}+3 c^{2}\right)-\left(a^{2}+c^{2}+2 a c\right) \\
& =b^{2}+2 c^{2}
\end{aligned}
$$

and therefore we find:

$$
\rho(X, Y)=\frac{b}{\sqrt{b^{2}+2 c^{2}}}
$$

2. (a) Here we are trying to choose a $g(X)$ that minimizes the conditional mean squared error $E\left[(Y-g(X))^{2} \mid X=x\right]$. As shown in section 4.6 in the text, this estimator is $g(X)=$ $E[Y \mid X=x]$.

$$
E[Y \mid X=x]= \begin{cases}\frac{1}{2} & 0 \leq x<1 \\ x-\frac{1}{2} & 1 \leq x \leq 2 \\ \text { Undefined } & \text { Otherwise }\end{cases}
$$

A plot of $g(X)$:

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

(b) $E\left[g^{*}(X)\right]=E[E[Y \mid X=x]]=E[Y]$, and note that $f_{X, Y}(x, y)=C=\frac{1}{2}$.

$$
\begin{aligned}
E[Y] & =\int_{x} \int_{y} y f_{X, Y}(x, y) d y d x \\
& =\int_{0}^{1} \int_{0}^{1} y \frac{1}{2} d y d x+\int_{1}^{2} \int_{x-1}^{x} y \frac{1}{2} d y d x \\
& =\int_{0}^{1} \frac{1}{4} d x+\int_{1}^{2} \frac{1}{4}(2 x-1) d x \\
& =\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(g^{*}(X)\right) & =\operatorname{Var}(E[Y \mid X=x])=E\left[E[Y \mid X]^{2}\right]-(E[E[Y \mid X]])^{2} \\
& =\int_{0}^{2} E[Y \mid X]^{2} f_{X}(x) d x-(E[Y])^{2} \\
& =\int_{0}^{1}\left(\frac{1}{2}\right)^{2} \frac{1}{2} d x+\int_{1}^{2}\left(x-\frac{1}{2}\right)^{2} \frac{1}{2} d x-\left(\frac{3}{4}\right)^{2} \\
& =\frac{5}{48}
\end{aligned}
$$

, where we have noted that $f_{X}(x)=\int_{y} f_{X, Y}(x, y) d y=\frac{1}{2}$ for $0 \leq x \leq 2$, and 0 otherwise.
(c) $E\left[\left(Y-g^{*}(X)\right)^{2}\right]$ and $E[\operatorname{Var}(Y \mid X)]$ are the same thing.

$$
\begin{aligned}
E\left[\left(Y-g^{*}(X)\right)^{2}\right] & =\int_{x} \int_{y}(y-E[Y \mid X=x])^{2} f_{Y \mid X}(y \mid x) f_{X}(x) d y d x \\
& =\int_{x} \operatorname{Var}(Y \mid X) f_{X}(x) d x \\
& =E[\operatorname{Var}(Y \mid X)]
\end{aligned}
$$

For any given value of $X, f_{Y \mid X}(y \mid x)$ is uniform. When $0 \leq x \leq 1, f_{Y \mid X}(y \mid x)$ is uniform over $0 \leq y \leq 1$, and zero otherwise. When $1 \leq x \leq 2, f_{Y \mid X}(y \mid x)$ is uniform over $x-1 \leq y \leq x$, and zero otherwise. Thus,

$$
\operatorname{Var}(Y \mid X=x)= \begin{cases}\frac{(1-0)^{2}}{12}=\frac{1}{12} & 0 \leq x<1 \\ \frac{(x-(x-1))^{2}}{12}=\frac{1}{12} & 1 \leq x \leq 2 \\ \text { Undefined } & \text { Otherwise }\end{cases}
$$

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

$$
\begin{aligned}
E[\operatorname{Var}(Y \mid X)] & =P(0 \leq x<1) \frac{1}{12}+P(1 \leq x \leq 2) \frac{1}{12} \\
& =[P(0 \leq x<1)+P(1 \leq x \leq 2)] \frac{1}{12} \\
& =1 * \frac{1}{12}
\end{aligned}
$$

Therefore, $E\left[\left(Y-g^{*}(X)\right)^{2}\right]=E[\operatorname{Var}(Y \mid X)]=\frac{1}{12}$
(d) By the law of conditional variance, we have $\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(E[Y \mid X])$. Using the answers to (b) and (c),

$$
\begin{aligned}
\operatorname{Var}(Y) & =E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(E[Y \mid X]) \\
& =\frac{1}{12}+\frac{5}{48}=\frac{3}{16}
\end{aligned}
$$

Of course, you can always find $f_{Y}(y)$ first and then calculate the variance in the usual way; it's just that in this problem we happen to have both components in the sum above.
3. (a) No. Since X_{i} for any $i \geq 1$ is uniformly distributed between -1.0 and 1.0.
(b) Yes, to 0 . Since for $\epsilon>0$,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \mathbf{P}\left(\left|Y_{i}-0\right|>\epsilon\right) & =\lim _{i \rightarrow \infty} \mathbf{P}\left(\left|\frac{X_{i}}{i}-0\right|>\epsilon\right) \\
& =\lim _{i \rightarrow \infty}\left[\mathbf{P}\left(X_{i}>i \epsilon\right)+\mathbf{P}\left(X_{i}<-i \epsilon\right)\right]=0 .
\end{aligned}
$$

(c) Yes, to 0 . Since for $\epsilon>0$,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \mathbf{P}\left(\left|Z_{i}-0\right|>\epsilon\right) & =\lim _{i \rightarrow \infty} \mathbf{P}\left(\left|\left(X_{i}\right)^{i}-0\right|>\epsilon\right) \\
& =\lim _{i \rightarrow \infty}\left[\mathbf{P}\left(X_{i}>\epsilon^{\frac{1}{i}}\right)+\mathbf{P}\left(X_{i}<-(\epsilon)^{\frac{1}{i}}\right)\right] \\
& =\lim _{i \rightarrow \infty}\left[\frac{1}{2}\left(1-\epsilon^{\frac{1}{i}}\right)+\frac{1}{2}\left(1-\epsilon^{\frac{1}{i}}\right)\right] \\
& =0 .
\end{aligned}
$$

(d) No. In order for T_{i} to converge in probability, $T_{i}-T_{i-1}$ must converge to zero in probability. Since $T_{i}-T_{i-1}=X_{i}$ for all $i, T_{i}-T_{i-1}$ does not converge to zero, and therefore T_{i} does not converge in probability.
(e) Yes, to 0. Applying weak law of large numbers, we have

$$
\mathbf{P}\left(\left|U_{i}-\mu\right|>\epsilon\right) \rightarrow 0 \text { as } i \rightarrow \infty, \text { for all } \epsilon>0
$$

Here $\mu=0$ since $X_{i} \sim U(-1.0,1.0)$.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

(f) Yes, to 0 .

$$
\begin{aligned}
\mathbf{E}\left[V_{n}\right] & =\mathbf{E}\left[\mathbf{E}\left[V_{n} \mid X_{n}\right]\right] \\
& =\mathbf{E}\left[X_{n} \mathbf{E}\left[V_{n-1}\right]\right]=\mathbf{E}\left[X_{n}\right] \mathbf{E}\left[V_{n-1}\right]=0 \\
\operatorname{var}\left(V_{n}\right) & =\mathbf{E}\left[\operatorname{var}\left(V_{n} \mid X_{n}\right)\right]+\operatorname{var}\left(\mathbf{E}\left[V_{n} \mid X_{n}\right]\right) \\
& =\mathbf{E}\left[X_{n}^{2} \operatorname{var}\left(V_{n-1}\right)\right]+\operatorname{var}\left(X_{n} \mathbf{E}\left[V_{n-1}\right]\right) \\
& =\mathbf{E}\left[X_{n}^{2}\right] \operatorname{var}\left(V_{n-1}\right)+\mathbf{E}\left[V_{n-1}\right]^{2} \operatorname{var}\left(X_{n}\right) \\
& =\frac{1}{3} \operatorname{var}\left(V_{n-1}\right)=\left(\frac{1}{3}\right)^{n-1} \operatorname{var}\left(X_{1}\right)
\end{aligned}
$$

Notice that as n becomes very large, $\operatorname{var}\left(V_{n}\right)$ approaches 0 . By Chebyshev's inequality, we know V_{n} approaches $\mathbf{E}\left[V_{n}\right]=0$ in probability.
(g) Yes, to 1 . Since for $\epsilon>0$,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \mathbf{P}\left(\left|W_{i}-1\right|>\epsilon\right) \leq & \lim _{i \rightarrow \infty} \mathbf{P}\left(\left|\max \left\{X_{1}, \cdots, X_{i}\right\}-1\right|>\epsilon\right) \\
= & \lim _{i \rightarrow \infty}\left[\mathbf{P}\left(\max \left\{X_{1}, \cdots, X_{i}\right\}>1+\epsilon\right)\right. \\
& \left.+\mathbf{P}\left(\max \left\{X_{1}, \cdots, X_{i}\right\}<1-\epsilon\right)\right] \\
= & \lim _{i \rightarrow \infty}\left[0+\left(1-\frac{\epsilon}{2}\right)^{i}\right] \\
= & 0 .
\end{aligned}
$$

