Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Recitation 15

April 20, 2006

1. Let X and Y be random variables, and let a and b be scalars; X takes nonnegative values.
(a) Use the Markov inequality on the random variable $e^{s Y}$ to show that

$$
P(Y \geq b) \leq e^{-s b} M_{Y}(s),
$$

for every $s>0$, where $M_{Y}(s)$ is the transform of Y.
2. Joe wishes to estimate the true fraction f of smokers in a large population without asking each and every person. He plans to select n people at random and then employ the estimator $F=S / n$, where S denotes the number of people in a size- n sample who are smokers. Joe would like to sample the minimum number of people, but also guarantee an upper bound p on the probability that the estimator F differs from the true value f by a value greater than or equal to d i.e., for a given accuracy d and given confidence p, Joe wishes to select the minimum n such that

$$
\mathbf{P}(|F-f| \geq d) \leq p
$$

For $p=0.05$ and a particular value of d, Joe uses the Chebyshev inequality to conclude that n must be at least 50,000 . Determine the new minimum value for n if:
(a) the value of d is reduced to half of its original value.
(b) the probability p is reduced to half of its original value, or $p=0.025$.
3. Let X_{1}, X_{2}, \ldots be a sequence of independent random variables that are uniformly distributed between 0 and 1 . For every n, we let Y_{n} be the median of the values of $X_{1}, X_{2}, \ldots, X_{2 n+1}$. [That is, we order $X_{1}, \ldots, X_{2 n+1}$ in increasing order and let Y_{n} be the $(n+1)$ st element in this ordered sequence.] Show that the sequence Y_{n} converges to $1 / 2$, in probability.

