Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Recitation 4 Solutions
 February 23, 2006

1. Problem 1.45, page 66. See online solutions.
2. (a) The $N_{i} \mathrm{~s}$ are the numbers of times each ball is selected, so the sum of the $N_{i} \mathrm{~s}$ must be the total number of draws from the urn.
(b) There is a nice visualization for this. Make a dot for each drawn ball, grouped according the ball's identity:

There is a total of k dots put in n groups. Think of there being a separator mark between groups, so there are $n-1$ separator marks:

This gives a grand total of $k+n-1$ dots and marks. The number of solutions is the number of ways to place k dots in $k+n-1$ locations: $\binom{k+n-1}{k}$.
(c) If we know that $X_{1}=\ell$, then applying the result of the previous part to the remaining balls and remaining draws from the urn gives $\binom{(k-\ell)+n(-1)-1}{k-\ell}$ as the desired number. Since this is just a way of breaking down the problem of the previous part, we have

$$
\sum_{\ell=0}^{k}\binom{k+n-\ell-2}{k-\ell}=\binom{k+n-1}{k} .
$$

3. (a) Students might say they are equal (both being the average number of students per bus) or have the correct intuition.
(b) Make sure to define the PMFs of X and Y. Then

$$
\begin{aligned}
& E[X]=\frac{40}{148} \cdot 40+\frac{33}{148} \cdot 33+\frac{25}{148} \cdot 25+\frac{50}{148} \cdot 50 \approx 39.3 \\
& E[Y]=\frac{1}{4} \cdot 40+\frac{1}{4} \cdot 33+\frac{1}{4} \cdot 25+\frac{1}{4} \cdot 50=37
\end{aligned}
$$

