Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis

Tutorial

March 9-10, 2006

1. By definition of expected value:

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} p x \lambda e^{-\lambda x} d x+\int_{-\infty}^{0}(1-p) x \lambda e^{\lambda x} d x \\
& =p \lambda \int_{0}^{\infty} x e^{-\lambda x} d x+(1-p) \lambda \int_{-\infty}^{0} x e^{\lambda x} d x \\
& =p \lambda\left(-\frac{1}{\lambda}\right)\left[\left.x e^{-\lambda x}\right|_{0} ^{\infty}-\int_{0}^{\infty} e^{-\lambda x} d x\right]+(1-p) \lambda\left(\frac{1}{\lambda}\right)\left[\left.x e^{\lambda x}\right|_{-\infty} ^{0}-\int_{-\infty}^{0} e^{\lambda x} d x\right] \\
& =p \lambda\left(-\frac{1}{\lambda}\right)\left(0-\frac{1}{\lambda}\right)+(1-p) \lambda\left(\frac{1}{\lambda}\right)\left(0-\frac{1}{\lambda}\right) \\
& =\frac{1}{\lambda}(2 p-1)
\end{aligned}
$$

By definition of variance:

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{0}^{\infty} p x^{2} \lambda e^{-\lambda x} d x+\int_{-\infty}^{0}(1-p) x^{2} \lambda e^{\lambda x} d x-(E[X])^{2} \\
& =p \frac{2}{\lambda^{2}}+(1-p) \frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}(2 p-1)^{2} \\
& =\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}(2 p-1)^{2}
\end{aligned}
$$

Another way of finding the expectation and the variance:
Let A be the event such that $x>0$. Using the Total Probability Theorem:

$$
\begin{aligned}
E[X] & =P(A) E[X \mid A]+P\left(A^{c}\right) E\left[X \mid A^{c}\right] \\
& =p *\left(\frac{1}{\lambda}+(1-p) *\left(-\frac{1}{\lambda}\right)\right. \\
& =\frac{1}{\lambda}(2 p-1)
\end{aligned}
$$

For variance, we use the formula:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =P(A) E\left[X^{2} \mid A\right]+P\left(A^{c}\right) E\left[X^{2} \mid A^{c}\right]-(E[X])^{2}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

 6.041/6.431: Probabilistic Systems Analysis

 6.041/6.431: Probabilistic Systems Analysis}

The value for $E\left[X^{2} \mid A\right]$ can be computed as follows:

$$
\begin{aligned}
\operatorname{Var}(X \mid A) & =E\left[X^{2} \mid A\right]-(E[X \mid A])^{2} \\
\frac{1}{\lambda^{2}} & =E\left[X^{2} \mid A\right]-\left(\frac{1}{\lambda}\right)^{2} \\
E\left[X^{2} \mid A\right] & =\frac{2}{\lambda^{2}}
\end{aligned}
$$

We can find $E\left[X^{2} \mid A^{c}\right]$ following the same logic. Let's continue with computing variance using the values for $E\left[X^{2} \mid A\right]$ and $E\left[{ }^{2} \mid A^{c}\right]$.

$$
\begin{aligned}
\operatorname{Var}(X) & =P(A) E\left[X^{2} \mid A\right]+P\left(A^{c}\right) E\left[X^{2} \mid A^{c}\right]-(E[X])^{2} \\
& =p * \frac{2}{\lambda^{2}}+(1-p)\left(\frac{2}{\lambda^{2}}\right)-\frac{1}{\lambda^{2}}(2 p-1)^{2} \\
& =\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}(2 p-1)^{2}
\end{aligned}
$$

2. (a) Let G represent the event that the weather is good. We are given $\mathbf{P}(G)=\frac{2}{3}$.

To find the PDF of X, we first find the PDF of W, since $X=s+W=2+W$. We know that given good weather, $W \sim N(0,1)$. We also know that given bad weather, $W \sim N(0,9)$. To find the unconditional PDF of W, we use the density version of the total probability theorem.

$$
\begin{aligned}
f_{W}(w) & =\mathbf{P}(G) \cdot f_{W \mid G}(w)+\mathbf{P}\left(G^{c}\right) \cdot f_{W \mid G^{c}}(w) \\
& =\frac{2}{3} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}}+\frac{1}{3} \cdot \frac{1}{3 \sqrt{2 \pi}} e^{-\frac{w^{2}}{2(9)}}
\end{aligned}
$$

We now perform a change of variables using $X=2+W$ to find the PDF of X :

$$
f_{X}(x)=f_{W}(x-2)=\frac{2}{3} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-2)^{2}}{2}}+\frac{1}{3} \cdot \frac{1}{3 \sqrt{2 \pi}} e^{-\frac{(x-2)^{2}}{18}} .
$$

(b) In principle, one can use the PDF determined in part (a) to compute the desired probability as

$$
\int_{1}^{3} f_{X}(x) d x
$$

It is much easier, however, to translate the event $\{1 \leq X \leq 3\}$ to a statement about W and then to apply the total probability theorem.

$$
\mathbf{P}(1 \leq X \leq 3)=\mathbf{P}(1 \leq 2+W \leq 3)=\mathbf{P}(-1 \leq W \leq 1)
$$

We now use the total probability theorem.

$$
\mathbf{P}(-1 \leq W \leq 1)=\mathbf{P}(G) \underbrace{\mathbf{P}(-1 \leq W \leq 1 \mid G)}_{a}+\mathbf{P}\left(G^{c}\right) \underbrace{\mathbf{P}\left(-1 \leq W \leq 1 \mid G^{c}\right)}_{b}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
Since conditional on either G or G^{c} the random variable W is Gaussian, the conditional probabilities a and b can be expressed using Φ. Conditional on G, we have $W \sim N(0,1)$ so

$$
a=\Phi(1)-\Phi(-1)=2 \Phi(1)-1 .
$$

Conditional on G^{c}, we have $W \sim N(0,9)$ so

$$
b=\Phi\left(\frac{1}{3}\right)-\Phi\left(-\frac{1}{3}\right)=2 \Phi\left(\frac{1}{3}\right)-1 .
$$

The final answer is thus

$$
\mathbf{P}(1 \leq X \leq 3)=\frac{2}{3}(2 \Phi(1)-1)+\frac{1}{3}\left(2 \Phi\left(\frac{1}{3}\right)-1\right) .
$$

3.

(a) Using the total expectation theorem, we obtain
$\mathbf{E}[X]=\mathbf{E}[X \mid A] \mathbf{P}(A)+\mathbf{E}[X \mid B] \mathbf{P}(B)=1 * \frac{1}{2}+\frac{1}{3} * \frac{1}{2}=\frac{2}{3}$
(b) Using the total probability theorem, we obtain
$\mathbf{P}(D)=\mathbf{P}(D \mid A) \mathbf{P}(A)+\mathbf{P}(D \mid B) \mathbf{P}(B)=\frac{1}{2} e^{-\tau}+\frac{1}{2} e^{-3 \tau}$
(c) Using the Bayes' theorem, we obtain
$\mathbf{P}\left(T_{1 A} \mid D\right)=\frac{\mathbf{P}\left(D \mid T_{1 A}\right) \mathbf{P}\left(T_{1 A}\right)}{\mathbf{P}(D)}=\frac{1}{1+e^{-2 \tau}}$
(d) Using the total expectation theorem, we obtain
$\mathbf{E}[$ Total Time Till Failure | D]
$=\tau+\mathbf{E}[$ Time to failure after $\tau \mid D, A] \mathbf{P}(A \mid D)+\mathbf{E}[$ Time to failure after $\tau \mid D, B] \mathbf{P}(B \mid D)$
$=\tau+\frac{1}{1+e^{-2 \tau}}+\left(\frac{1}{3}\right) \frac{e^{-2 \tau}}{1+e^{-2 \tau}}$

