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1. By definition of expected value: 
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By definition of variance: 
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V ar(X) = px 2λe −λxdx + (1 − p)x 2λe λxdx − (E[X])2 
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Another way of finding the expectation and the variance:


Let A be the event such that x > 0. Using the Total Probability Theorem:


E[X] = P (A)E[X|A] + P (Ac)E[X Ac]|
1 1 

= p ∗ ( + (1 − p) ∗ (− )
λ λ

1 = 
λ
(2p − 1) 

For variance, we use the formula: 

V ar(X) = E[X2] − (E[X])2 

= P (A)E[X2 A] + P (Ac)E[X2 Ac] − (E[X])2| |
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The value for E[X2|A] can be computed as follows: 

V ar(X A) = E[X2 A] − (E[X A])2 ||
1 

|
1 

= E[X2 A] − (
λ2 

|
λ

)2 

2 
E[X2 A] = 

λ2
|

We can find E[X2|Ac] following the same logic. Let’s continue with computing variance using 
the values for E[X2|A] and E[2 Ac]. |

V ar(X) = P (A)E[X2 A] + P (Ac)E[X2 Ac] − (E[X])2 |
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2.	 (a) Let G represent the event that the weather is good. We are given P(G) = 2
3 

2

. 

To find the PDF of X, we first find the PDF of W , since X = s + W = + W . We 
know that given good weather, W ∼ N(0, 1). We also know that given bad weather, 

N(0, 9). To find the unconditional PDF of W , we use the density version of the W ∼
total probability theorem. 

fW (w)	 = P(G) fW |G(w) + P(Gc) fW |Gc (w)·	 · 
2 12 1 −w 1 − w 
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We now perform a change of variables using X = 2 + W to find the PDF of X: 

2 1 −
(x−2)2 1 1 −

(x−2)2 

fX(x) = fW (x − 2) = 18 . 
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(b) In principle, one can use the PDF determined in part (a) to compute the desired prob
ability as 

� 
3 

fX(x) dx. 
1 

It is much easier, however, to translate the event {1 ≤ X ≤ 3} to a statement about W 

and then to apply the total probability theorem. 

P(1 ≤ X ≤ 3) = P(1 ≤ 2 + W ≤ 3) = P(−1 ≤ W ≤ 1) 

We now use the total probability theorem. 

P(−1 ≤ W ≤ 1) = P(G)P(−1 ≤ W ≤ 1 G) +P(Gc)P(−1 ≤ W ≤ 1 Gc)|	 |
� �� � � �� � 

a	 b 
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Since conditional on either G or Gc the random variable W is Gaussian, the conditional 
probabilities a and b can be expressed using Φ. Conditional on G, we have W ∼ N(0, 1) 
so 

a = Φ(1) − Φ(−1) = 2Φ(1) − 1. 

Conditional on Gc, we have W ∼ N(0, 9) so 

�
1
� � 

1
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1
� 

b = Φ = 2Φ − 1. 
3 

− Φ −
3 3 

The final answer is thus 

2 1 
� �

1
� � 

P(1 ≤ X ≤ 3) = (2Φ (1) − 1) + 2Φ .− 1 
3 3 3 

3. 

(a) Using the total expectation theorem, we obtain

1 1 1 2


E[X] = E[X A]P(A) + E[X B]P(B) = + =1 ∗| |
2 3 

∗ 
2 3 

(b) Using the total probability theorem, we obtain

1 −τ 1 −3τ
P(D) = P(D A)P(A) + P(D B)P(B) = e + e| |
2 2 

(c) Using the Bayes’ theorem, we obtain

P(D T1A)P(T1A)


P(T1A|D) = 
|

=
1 

P(D) 1 + e−2τ 

(d) Using the total expectation theorem, we obtain

E[Total Time Till Failure D]
|
= τ +E[Time to failure after τ D, A]P(A D)+E[Time to failure after τ D, B]P(B D) 

+ (1 −2τ 

| | | |
e= τ + 

1+e

1 
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)
1+e−2τ 


