Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Recitation 15

April 20, 2006

1. See textbook pg. 399
2. (a) $N=200,000$.
(b) $N=100,000$.
3. Let us fix some $\epsilon>0$. We will show that $P\left(Y_{n} \geq 0.5+\epsilon\right)$ converges to 0 . By symmetry, this will imply that $P\left(Y_{n} \leq 0.5-\epsilon\right)$ also converges to zero, and it will follow that Y_{n} converges to 0.5 , in probability.

For the event $\left\{Y_{n} \geq 0.5+\epsilon\right\}$ to occur, we must have at least $n+1$ of the random variables $X_{1}, X_{2}, \ldots, X_{2 n+1}$ to have a value of $0.5+\epsilon$ or larger. Let Z_{i} be a Bernoulli random variable which is equal to 1 if and only if $X_{i} \geq 0.5+\epsilon$:

$$
Z_{i}=\left\{\begin{array}{cc}
1 & \text { if } X_{i} \geq 0.5+\epsilon \\
0 & \text { otherwise }
\end{array}\right.
$$

$\left\{Z_{1}, Z_{2}, \ldots.\right\}$ are i.i.d random variables and $E\left[Z_{i}\right]=P\left(Z_{i}=1\right)=P\left(X_{i} \geq 0.5+\epsilon\right)=0.5-\epsilon$.
Hence, for the event $\left\{Y_{n} \geq 0.5+\epsilon\right\}$ to occur, we must have at least $n+1$ of the $\left\{Z_{i}\right\}$ to take value 1 ,

$$
\begin{aligned}
P\left(Y_{n} \geq 0.5+\epsilon\right) & =P\left(\sum_{i=1}^{2 n+1} Z_{i} \geq n+1\right) \\
& =P\left(\frac{\sum_{i=1}^{2 n+1} Z_{i}}{2 n+1} \geq \frac{n+1}{2 n+1}\right) \\
& =P\left(\frac{\sum_{i=1}^{2 n+1} Z_{i}}{2 n+1} \geq 0.5+\frac{1}{2(2 n+1)}\right) \\
& \leq P\left(\frac{\sum_{i=1}^{2 n+1} Z_{i}}{2 n+1} \geq 0.5\right)
\end{aligned}
$$

Note that $P\left(Z_{i}=1\right)=0.5-\epsilon$. By the weak law of large numbers, the sequence $\left(Z_{1}+\right.$ $\left.\cdots+Z_{2 n+1}\right) /(2 n+1)$ converges to $0.5-\epsilon$. To show that $P\left(\frac{Z_{1}+\cdots+Z_{2 n+1}}{2 n+1} \geq 0.5\right)$ converges to zero, we need to show that for any given $\epsilon>0$, there exists N such that for all $n>N$, $P\left(\frac{Z_{1}+\cdots+Z_{2 n+1}}{2 n+1} \geq 0.5\right)<\epsilon$. The fact that the sequence $\left(Z_{1}+\cdots+Z_{2 n+1}\right) /(2 n+1)$ converges to $0.5-\epsilon$ ensures the existence of such N. Since $P\left(Y_{n} \geq 0.5+\epsilon\right)$ is bounded by $P\left(\frac{\sum_{i=1}^{2 n+1} Z_{i}}{2 n+1} \geq 0.5\right)$, it also converges to zero.

