Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Spring 2006)

Tutorial 05
 March 16-17, 2006

1. For X a random variable uniformly distributed between -1 and 1 , find the density function of Y where:
a) $Y=\sqrt{|X|}$.
b) $Y=-\ln |X|$.
2. a) Suppose a random variable X is uniformly distributed between 0 and 1 . If $Y=\cos \pi X$ find the density function for Y.
b) Now suppose X is uniformly distributed between $-1 / 2$ and $1 / 2$. Find the density function for Y, where $Y=\tan \pi X$.
3. Optional Suppose X is a standard normal random variable, i.e. $X \sim N[0,1]$. Find the density for Y, where:
a) $Y=X^{2}$.
b) $Y=e^{X}$.
4. Let continuous random variables X, Y and Z be independent and identically distributed according to the uniform distribution in the unit interval $[0,1]$.
(a) Consider two new random variables defined by $V=X Y$ and $W=Z^{2}$. Derive the joint $\operatorname{PDF} f_{V, W}(v, w)$.
(b) Show that $\mathbf{P}\left(X Y<Z^{2}\right)=\frac{5}{9}$.
