Tutorial 05 March 16-17, 2006

- 1. For X a random variable uniformly distributed between -1 and 1, find the density function of Y where:
 - a) $Y = \sqrt{|X|}$.
 - b) $Y = -\ln|X|$.
- 2. a) Suppose a random variable X is uniformly distributed between 0 and 1. If $Y = \cos \pi X$ find the density function for Y.

b) Now suppose X is uniformly distributed between -1/2 and 1/2. Find the density function for Y, where $Y = \tan \pi X$.

- 3. **Optional** Suppose X is a standard normal random variable, i.e. $X \sim N[0, 1]$. Find the density for Y, where:
 - a) $Y = X^2$.
 - b) $Y = e^X$.
- 4. Let continuous random variables X, Y and Z be independent and identically distributed according to the uniform distribution in the unit interval [0, 1].
 - (a) Consider two new random variables defined by V = XY and $W = Z^2$. Derive the joint PDF $f_{V,W}(v, w)$.
 - (b) Show that $\mathbf{P}(XY < Z^2) = \frac{5}{9}$.