LECTURE 13A

• Readings: Section 4.3, 4.4

Lecture outline

 Sum of a random number of independent random variables:

- mean, variance, transform

Bookstore Example (1)

- George visits a number of book stores looking for the "Hair Book".
- A bookstore caries such a book with probability $\frac{1}{3}$.
- The time George spends in each book store is exponentially distributed with $\lambda = 3$.
- George will visit bookstores until he finds the book.
- We want to find the PDF, mean, variance of the time he spends in bookstores.
- Total time: $Y = X_1 + X_2 + \dots + X_N$

Sum of a Random Number of Independent Random Variables

- N: nonnegative integer-valued r.v.
- X_1, X_2, \cdots : i.i.d. r.v.s, independent of N .
- Let: $Y = X_1 + \cdots + X_N$. Then:
- Mean: E[Y] = E[E[Y|N]]
 - $= \mathbf{E}[N\mathbf{E}[X]]$ $= \mathbf{E}[N]\mathbf{E}[X]$
- Variance:

Var(Y) = E[Var(Y|N)] + Var(E[Y|N]) $= E[N]Var(X) + (E[X])^{2}Var(N)$

Bookstore Example (2)

- Number of bookstores, N :
 - PMF $p_N(n) = \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$

 - Mean $E[N] = \frac{1}{\frac{1}{3}} = 3$ Variance $Var(N) \stackrel{3}{=} \frac{1-\frac{1}{3}}{(\frac{1}{2})^2} = 6$

(geometric, from n=1)

- Time in each bookstore, X (i.i.d., indep of N):
 - $f_X(x) = 3e^{-3x}$ - PDF x > 0
 - Mean $E[X] = \frac{1}{3}$
 - Variance $Var(X) = \frac{1}{q}$
- Total time, Y:
 - Mean E[Y] = E[N]E[X] = 1
 - Variance $Var(Y) = E[N]Var(X) + (E[X])^2Var(N)$

Review of Transforms

- Definitions: $M_X(s) = \mathbf{E}[e^{sX}] = \begin{cases} \sum_x e^{sx} p_X(x) \\ \int_{-\infty}^{\infty} e^{sx} f_X(x) dx \end{cases}$
- Moment generating properties:

$$\left. \frac{d^n}{ds^n} M_X(s) \right|_{s=0} = \mathbf{E}[X^n]$$

• Transform of sum of independent r.v.s:

X, Y independent W = X + Y

$$M_W(s) = M_X(x)M_Y(s)$$

Transform of "Random Sum"

- N : nonnegative integer-valued r.v.
- X_1, \cdots, X_N : i.i.d. r.v.s, independent of N .
- If $Y = X_1 + \dots + X_N$, we have:

$$M_Y(s) = \mathbf{E}[e^{sY}]$$

= $\mathbf{E}\left[\mathbf{E}[e^{sY}|N]\right]$
= $\mathbf{E}\left[\mathbf{E}[e^{s(X_1 + \dots + X_N)}|N]\right]$
= $\mathbf{E}\left[M_X(s)^N\right]$

- Compare with: $M_N(s) = \mathbf{E}[(e^s)^N]$
- Thus, to get $M_Y(s)$, start with $M_N(s)$ and replace each occurrence of e^s by $M_X(s)$.

Bookstore Example (3)

- Number of bookstores: - Transform $M_N(s) = \frac{e^s/3}{1 - 2e^s/3} = \mathbf{E}\left[(e^s)^N\right]$
- Time in each bookstore:
 - Transform $M_X(s) =$

$$= \frac{3}{3-s}$$

• Total time:

- Transform
$$M_Y(s) = \underbrace{\mathbf{E}\left[M_X(s)^N\right]}_{= \frac{\left(\frac{3}{3-s}\right)/3}{1-2\left(\frac{3}{3-s}\right)/3} = \frac{1}{1-s}$$

- **PDF:** $f_Y(y) = e^{-y}$ $y \ge 0$ (exponential, with $\lambda = 1$)

Motivational Example

• Branching Process:

 Evolution, growth of a population of cells, increase of neutrons in a reactor, spread of an epidemic...

- Z(0) = 1 and $X_i(t)$ i.i.d. geometric, incl. zero.
- We need: mean, variance, PMF of Z(t).

Branching Process: Mean

- Recall: $Z(t) = X_1(t) + \dots + X_{Z(t-1)}(t)$
- For time step t: N = Z(t-1) $Y = Z(t) = X_1 + \dots + X_N$
- $X_i(t)$ i.i.d.: $p_X(x) = p(1-p)^x$ $x = 0, 1, \cdots$ $E[X] = \mu = \frac{1-p}{p}$ $Var(X) = \sigma^2 = \frac{1-p}{p^2}$
- Mean (using previous slide):

 $\mathbf{E}[Z(t)] = \mathbf{E}[Z(t-1)]\mu$

• Solve recursively, e.g.: $E[Z(t)] = \mu^t$

Branching Process: Variance

 $\operatorname{Var}(Z(t)) = \operatorname{E}[Z(t-1)]\sigma^2 + \mu^2 \operatorname{Var}(Z(t-1))$ $= \mu^2 \operatorname{Var}(Z(t-1)) + \mu^{t-1} \sigma^2$ $=\begin{cases} t\sigma^2 & \mu = 1\\ \frac{\sigma^2\mu^{t-1}(\mu^t - 1)}{\mu - 1} & \mu \neq 1 \end{cases}$

Branching Process: Transforms

$$Z(t) = X_1(t) + \dots + X_{Z(t-1)}(t)$$

• Recall, for time step t:

N = Z(t-1) $Y = Z(t) = X_1 + \dots + X_N$

• Thus, to get $M_{Z(t)}(s)$, start with $M_{Z(t-1)}(s)$ and replace each occurrence of e^s by $M_X(s)$, where: $p_X(x) = p(1-p)^x \iff M_X(s) = \frac{p}{1-(1-p)e^s}$

$$M_{Z(0)}(s) = e^{s} \qquad p_{Z(0)}(z) = 1 \text{ if } z = 1$$

$$M_{Z(1)}(s) = \frac{p}{1 - (1 - p)e^{s}} \qquad p_{Z(1)}(z) = p_{X}(z)$$

$$M_{Z(2)}(s) = \frac{p}{1 - (1 - p)\frac{p}{1 - (1 - p)e^{s}}} = \frac{p[1 - (1 - p)e^{s}]}{1 - p(1 - p) - (1 - p)e^{s}}$$

Challenge

• For p = .5

• Show that

$$P(Z(n) = 0) = \frac{n}{n+1}$$