LECTURE 13A

- Readings: Section 4.3, 4.4

Lecture outline

- Sum of a random number of independent random variables:
- mean, variance, transform

Bookstore Example (1)

- George visits a number of book stores looking for the "Hair Book".
- A bookstore caries such a book with probability $\frac{1}{3}$.
- The time George spends in each book store is exponentially distributed with $\lambda=3$.
- George will visit bookstores until he finds the book.
- We want to find the PDF, mean, variance of the time he spends in bookstores.
- Total time: $Y=X_{1}+X_{2}+\cdots+X_{N}$

Sum of a Random Number of Independent Random Variables

- N : nonnegative integer-valued r.v.
- X_{1}, X_{2}, \cdots : i.i.d. r.v.s, independent of N.
- Let: $Y=X_{1}+\cdots+X_{N}$. Then:
- Mean: $\mathbf{E}[Y]=\mathbf{E}[\mathbf{E}[Y \mid N]]$

$$
\begin{aligned}
& =\mathrm{E}[N \mathrm{E}[X]] \\
& =\mathrm{E}[N] \mathrm{E}[X]
\end{aligned}
$$

- Variance:

$$
\begin{aligned}
\operatorname{Var}(Y) & =\mathbf{E}[\operatorname{Var}(Y \mid N)]+\operatorname{Var}(\mathbf{E}[Y \mid N]) \\
& =\underline{\mathrm{E}[N] \operatorname{Var}(X)+(\mathbf{E}[X])^{2} \operatorname{Var}(N)}
\end{aligned}
$$

Bookstore Example (2)

- Number of bookstores, N :
- PMF

$$
p_{N}(n)=\frac{1}{3}\left(\frac{2}{3}\right)^{n-1}
$$

(geometric, from $n=1$)

- Mean
- Variance

$$
\begin{aligned}
& \mathrm{E}[N]=\frac{1}{\frac{1}{3}}=3 \\
& \operatorname{Var}(N) \stackrel{1-\frac{1}{3}}{=}=6
\end{aligned}
$$

,

- Time in each bookstore, X (i.i.d., indep of N):
- PDF $\quad f_{X}(x)=3 e^{-3 x} \quad x \geq 0$
- Mean $\quad \mathrm{E}[X]=\frac{1}{3}$
- Variance $\operatorname{Var}(X)=\frac{1}{9}$
- Total time, Y :
- Mean

$$
\mathbf{E}[Y]=\mathbf{E}[N] \mathbf{E}[X]=1
$$

- Variance $\operatorname{Var}(Y)=\mathrm{E}[N] \operatorname{Var}(X)+(\mathrm{E}[X])^{2} \operatorname{Var}(N)$

$$
=1
$$

Review of Transforms

- Definitions: $M_{X}(s)=\mathrm{E}\left[e^{s X}\right]=\left\{\begin{array}{l}\sum_{x} e^{s x_{p_{X}}(x)} \\ \int_{-\infty}^{\infty} e^{s x_{X}(x) d x}\end{array}\right.$
- Moment generating properties:

$$
\left.\frac{d^{n}}{d s^{n}} M_{X}(s)\right|_{s=0}=\mathrm{E}\left[X^{n}\right]
$$

- Transform of sum of independent r.v.s:
X, Y independent $\quad W=X+Y$

$$
M_{W}(s)=M_{X}(x) M_{Y}(s)
$$

Transform of "Random Sum"

- N : nonnegative integer-valued r.v.
- X_{1}, \cdots, X_{N} : i.i.d. r.v.s, independent of N.
- If $Y=X_{1}+\cdots+X_{N}$, we have:

$$
\begin{aligned}
M_{Y}(s) & =\mathbf{E}\left[e^{s Y}\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[e^{s Y} \mid N\right]\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[e^{s\left(X_{1}+\cdots+X_{N}\right)} \mid N\right]\right] \\
& =\mathbf{E}\left[M_{X}(s)^{N}\right]
\end{aligned}
$$

- Compare with: $M_{N}(s)=\mathrm{E}\left[\left(e^{s}\right)^{N}\right]$
- Thus, to get $M_{Y}(s)$, start with $M_{N}(s)$ and replace each occurrence of e^{s} by $M_{X}(s)$.

Bookstore Example (3)

- Number of bookstores:
- Transform $\underline{\underline{M_{N}(s)}}=\frac{e^{s} / 3}{1-2 e^{s} / 3} \underline{\underline{\mathbf{E}\left[\left(e^{s}\right)^{N}\right]}}$
- Time in each bookstore:
- Transform $\quad M_{X}(s)=\frac{3}{3-s}$
- Total time:
- Transform $\quad M_{Y}(s)=\underline{\underline{\mathbf{E}\left[M_{X}(s)^{N}\right]}}$

$$
=\frac{\left(\frac{3}{3-s}\right) / 3}{1-2\left(\frac{3}{3-s}\right) / 3}=\frac{1}{1-s}
$$

- PDF: $f_{Y}(y)=e^{-y} \quad y \geq 0 \quad$ (exponential, with $\lambda=1$)

Motivational Example

- Branching Process:
- Evolution, growth of a population of cells, increase of neutrons in a reactor, spread of an epidemic...

$$
\begin{aligned}
& Z(0)=1 \\
& Z(1)=2 \\
& Z(2)=4 \\
& Z(3)=6
\end{aligned}
$$

$$
x_{1}(1)=2
$$

$$
X_{1}(2)=3 \quad X_{2}(2)=1
$$

$$
X_{1}(3)=2 \quad X_{2}(3)=0 \quad X_{3}(3)=1 \quad X_{4}(3)=3
$$

$$
Z(t)=X_{1}(t)+X_{2}(t)+\cdots \quad+\quad X_{Z(t-1)}(t)
$$

- $Z(0)=1$ and $X_{i}(t)$ i.i.d. geometric, incl. zero.
- We need: mean, variance, PMF of $Z(t)$.

Branching Process: Mean

- Recall: $Z(t)=X_{1}(t)+\cdots+X_{Z(t-1)}(t)$
- For time step $t: N=Z(t-1)$

$$
Y=Z(t)=X_{1}+\cdots+X_{N}
$$

- $X_{i}(t)$ i.i.d.: $p_{X}(x)=p(1-p)^{x} \quad x=0,1, \cdots$ $E[X]=\mu=\frac{1-p}{p} \quad \operatorname{Var}(X)=\sigma^{2}=\frac{1-p}{p^{2}}$
- Mean (using previous slide):
$\mathrm{E}[Z(t)]=\mathrm{E}[Z(t-1)] \mu$
- Solve recursively, e.g.: $\mathbf{E}[Z(t)]=\mu^{t}$

Branching Process: Variance

$\operatorname{Var}(Z(t))=\mathrm{E}[Z(t-1)] \sigma^{2}+\mu^{2} \operatorname{Var}(Z(t-1))$

$$
\begin{aligned}
& =\mu^{2} \operatorname{Var}(Z(t-1))+\mu^{t-1} \sigma^{2} \\
& = \begin{cases}t \sigma^{2} & \mu=1 \\
\frac{\sigma^{2} \mu^{t-1}\left(\mu^{t}-1\right)}{\mu-1} & \mu \neq 1\end{cases}
\end{aligned}
$$

Branching Process: Transforms

$$
Z(t)=X_{1}(t)+\cdots+X_{Z(t-1)}(t)
$$

- Recall, for time step t :

$$
N=Z(t-1) \quad Y=Z(t)=X_{1}+\cdots+X_{N}
$$

- Thus, to get $M_{Z(t)}(s)$, start with $M_{Z(t-1)}(s)$ and replace each occurrence of e^{s} by $M_{X}(s)$, where:
$p_{X}(x)=\underset{(x=0,1, \cdots)}{p(1-p)^{x}} \Longleftrightarrow M_{X}(s)=\frac{p}{1-(1-p) e^{s}}$

$$
\begin{array}{ll}
M_{Z(0)}(s)=e^{s} & p_{Z(0)}(z)=1 \text { if } z=1 \\
M_{Z(1)}(s)=\frac{p}{1-(1-p) e^{s}} & p_{Z(1)}(z)=p_{X}(z) \\
M_{Z(2)}(s)=\frac{p}{1-(1-p) \frac{p}{1-(1-p) e^{s}}}=\frac{p\left[1-(1-p) e^{s}\right]}{1-p(1-p)-(1-p) e^{s}}
\end{array}
$$

Challenge

- For $p=.5$
- Show that

$$
P(Z(n)=0)=\frac{n}{n+1}
$$

