Recitation 09 Answers March 21, 2006

1.

(a)
$$P[A] = \frac{7}{8}$$

(b) $P[A]$ wins 7 out of 10 races] $= \binom{10}{7} (\frac{7}{8})^7 (\frac{1}{8})^3$
(c) $f_w(w_0) = \begin{cases} \frac{1}{2}, & 1 < w_0 \le 2\\ \frac{7}{4} - \frac{w_0}{2}, & 2 < w_0 \le 3\\ 0, & \text{otherwise} \end{cases}$

2.

$$f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$$

for w = x + y and x, y independent. This operation is called the *convolution* of $f_X(x)$ and $f_Y(y)$.

$$f_W(w) = \begin{cases} 5w, & 0 \le w \le 0.1 \\ 0.5, & 0.1 \le w \le 0.9 \\ 5(0.1 + (w - 0.9)), & 0.9 \le w \le 1.0 \\ 5(0.1 + (1.1 - w)), & 1.0 \le w \le 1.1 \\ 0.5, & 1.1 \le w \le 1.9 \\ 5(2.0 - w), & 1.9 \le w \le 2.0 \\ 0, & \text{otherwise} \end{cases}$$

3. Let X and Y be the number of flips until Alice and Bob stop, respectively. Thus, X + Y is the total number of flips until both stop. The random variables X and Y are independent geometric random variables with parameters 1/4 and 3/4, respectively. By convolution, we have

$$p_{X+Y}(j) = \sum_{k=-\infty}^{\infty} p_X(k) p_Y(j-k)$$

=
$$\sum_{k=1}^{j-1} (1/4) (3/4)^{k-1} (3/4) (1/4)^{j-k-1}$$

=
$$\frac{1}{4^j} \sum_{k=1}^{j-1} 3^k$$

=
$$\frac{1}{4^j} \left(\frac{3^j - 1}{3 - 1} - 1 \right)$$

=
$$\frac{3}{2} \frac{(3^{j-1} - 1)}{4^j},$$

if $j \ge 2$, and 0 otherwise. (Even though X + Y is *not* geometric, it roughly behaves like one with parameter 3/4.)