Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Spring 2006)

Recitation 09 Answers

March 21, 2006
1.
(a) $P[A]=\frac{7}{8}$
(b) $P[\mathrm{Al}$ wins 7 out of 10 races $]=\binom{10}{7}\left(\frac{7}{8}\right)^{7}\left(\frac{1}{8}\right)^{3}$
(c) $f_{w}\left(w_{0}\right)= \begin{cases}\frac{1}{2}, & 1<w_{0} \leq 2 \\ \frac{7}{4}-\frac{w_{0}}{2}, & 2<w_{0} \leq 3 \\ 0, & \text { otherwise }\end{cases}$
2.

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x
$$

for $w=x+y$ and x, y independent. This operation is called the convolution of $f_{X}(x)$ and $f_{Y}(y)$.

$$
f_{W}(w)= \begin{cases}5 w, & 0 \leq w \leq 0.1 \\ 0.5, & 0.1 \leq w \leq 0.9 \\ 5(0.1+(w-0.9)), & 0.9 \leq w \leq 1.0 \\ 5(0.1+(1.1-w)), & 1.0 \leq w \leq 1.1 \\ 0.5, & 1.1 \leq w \leq 1.9 \\ 5(2.0-w), & 1.9 \leq w \leq 2.0 \\ 0, & \text { otherwise }\end{cases}
$$

3. Let X and Y be the number of flips until Alice and Bob stop, respectively. Thus, $X+Y$ is the total number of flips until both stop. The random variables X and Y are independent geometric random variables with parameters $1 / 4$ and $3 / 4$, respectively. By convolution, we have

$$
\begin{aligned}
p_{X+Y}(j) & =\sum_{k=-\infty}^{\infty} p_{X}(k) p_{Y}(j-k) \\
& =\sum_{k=1}^{j-1}(1 / 4)(3 / 4)^{k-1}(3 / 4)(1 / 4)^{j-k-1} \\
& =\frac{1}{4^{j}} \sum_{k=1}^{j-1} 3^{k} \\
& =\frac{1}{4^{j}}\left(\frac{3^{j}-1}{3-1}-1\right) \\
& =\frac{3}{2} \frac{\left(3^{j-1}-1\right)}{4^{j}}
\end{aligned}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)
if $j \geq 2$, and 0 otherwise. (Even though $X+Y$ is not geometric, it roughly behaves like one with parameter 3/4.)

