Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Recitation 14 Solutions
 April 11, 2006

1. We know that:

$$
\rho\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{X_{1}} \sigma_{X_{2}}}
$$

Therefore we first find the covariance:

$$
\begin{aligned}
\operatorname{Cov}(A, B) & =\mathbf{E}[A B]-\mathbf{E}[A] \mathbf{E}[B] \\
& =\mathbf{E}\left[W X+W Y+X^{2}+X Y\right] \\
& =\mathbf{E}\left[X^{2}\right]=1
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{A} & =\sqrt{\operatorname{Var}(A)}=\sqrt{2} \\
\sigma_{B} & =\sqrt{\operatorname{Var}(B)}=\sqrt{2}
\end{aligned}
$$

and therefore:

$$
\rho(A, B)=\frac{1}{2} .
$$

We proceed as above to find the correlation of A, C.

$$
\begin{aligned}
\operatorname{Cov}(A, C) & =\mathbf{E}[A C]-\mathbf{E}[A] \mathbf{E}[C] \\
& =\mathbf{E}[W Y+W Z+X Y+X Z] \\
& =0
\end{aligned}
$$

and therefore

$$
\rho(A, C)=0
$$

2. Solution is in the text, pp. 264-265.
3. Solution is in the text, pp. 267-268.
