Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Tutorial 08

April 13-14, 2006

1. Suppose X is a unit normal random variable. Define a new random variable Y such that:

$$
Y=a+b X+c X^{2} .
$$

Find the correlation coefficient ρ for X, Y.
2. Continuous random variables X and Y have a joint PDF given by

$$
f_{X, Y}(x, y)= \begin{cases}C & \text { if }(x, y) \text { belongs to the closed shaded region } \\ 0 & \text { otherwise }\end{cases}
$$

(a) The experimental value of X will be revealed to us; we have to design an estimator $g(X)$ of Y that minimizes the conditional expectation $E\left[(Y-g(X))^{2} \mid X=x\right]$, for all x, over all possible estimators. Provide a plot of the optimal estimator as a function of its argument.
(b) Let $g^{*}(X)$ be the optimal estimator of part (a). Find the numerical value of $E\left[g^{*}(X)\right]$ and $\operatorname{var}\left(g^{*}(X)\right) ?$
(c) Find the mean square error $E\left[\left(Y-g^{*}(X)\right)^{2}\right]$. Is that the same as $E[\operatorname{var}(Y \mid X)]$?
(d) Find $\operatorname{var}(Y)$.
3. Random variable X is uniformly distributed between -1.0 and 1.0. Let X_{1}, X_{2}, \ldots, be independent identically distributed random variables with the same distribution as X. Determine which, if any, of the following sequences (all with $i=1,2, \ldots$) are convergent in probability. Give reasons for your answers. Include the limits if they exist.
(a) X_{i}
(b) $Y_{i}=\frac{X_{i}}{i}$
(c) $Z_{i}=\left(X_{i}\right)^{i}$
(d) $T_{i}=X_{1}+X_{2}+\ldots+X_{i}$
(e) $U_{i}=\frac{X_{1}+X_{2}+\ldots+X_{i}}{i}$
(f) $V_{i}=X_{1} \cdot X_{2} \cdot \ldots \cdot X_{i}$
(g) $W_{i}=\max \left(X_{1}, \ldots, X_{i}\right)$

