Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Recitation 08 Answers

March 09, 2006

1. (a) The marginal distributions are obtained by integrating the joint distribution along the X and Y axes and is shown in the following figure.

Figure 1: Marginal probabilities $f_{X}(x)$ and $f_{Y}(y)$ obtained by integration along the y and x axes respectively

The conditional PDFs are as shown in the figure below.
(b) X and Y are NOT indepenent since $f_{X Y}(x, y) \neq f_{X}(x) f_{Y}(y)$. Also, from the figures we have $f_{X \mid Y}(x \mid y) \neq f_{X}(x)$.
(c)

$$
\begin{aligned}
f_{X, Y \mid A}(x, y) & = \begin{cases}\frac{f_{X, Y}((x, y)}{\mathbf{P}(A)} & (x, y) \in A \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{0.1}{\pi 0.1} & (x, y) \in A \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(d)

$$
\mathbf{E}[X \mid Y=y]=\left\{\begin{array}{ll}
0 & -2.0 \leq y \leq-1.0 \\
\frac{1}{2} & -1.0 \leq y \leq 1.0 \\
0 & 1.0 \leq y \leq 2.0
\end{array}\right\}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Figure 2: Conditional Probabilities

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)
The conditional variance $\operatorname{var}(X \mid Y=y)$ is given by

$$
\operatorname{var}(X \mid Y=y)=\left\{\begin{array}{ll}
\frac{4}{12} & -2.0 \leq y \leq-1.0 \\
\frac{9}{12} & -1.0 \leq y \leq 1.0 \\
\frac{4}{12} & 1.0 \leq y \leq 2.0
\end{array}\right\}
$$

2. (a) We have $a=1 / 800$, so that

$$
f_{X Y}(x, y)=\left\{\begin{array}{ll}
1 / 1600 & \text { if } 0 \leq x \leq 40 \text { and } 0 \leq y \leq 2 x \\
0, & \text { otherwise. }
\end{array}\right\}
$$

(b) $\mathbf{P}(Y>X)=1 / 2$
(c) Let $Z=Y-X$. We have

$$
f_{Z}(z)=\left\{\begin{array}{ll}
\frac{1}{1600} z+\frac{1}{4}, & \text { if }-40 \leq z \leq 0 \\
-\frac{1}{1600}+\frac{1}{40}, & \text { if } 0 \leq z \leq 40 \\
0, & \text { otherwise }
\end{array}\right\}
$$

$\mathrm{E}[Z]=0$.

