Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Tutorial 07 Answers
 April 6-7, 2006

1. This is a simple recurrence relation. Let α_{k} be your expected gain after k rounds. Clearly, we have:

$$
\alpha_{k}=\alpha_{k-1}\left(2-4 p+4 p^{2}\right)=\alpha_{1}\left(2-4 p+4 p^{2}\right)^{k}
$$

and therefore your expected worth after n rounds is:

$$
X \cdot\left(2-4 p+4 p^{2}\right)^{n+1}
$$

2. (a) X and Y are not independent.
(b) Y and Z are independent.
(c) N / A.
(d) N/A.
3. (a)

$$
M_{X}(s)=\sum_{k=0}^{78}\binom{78}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{78-k} e^{\left(k s^{2} / 8\right)+k s}
$$

(b)

$$
M_{X}(s)=\left(\frac{1}{2}+\frac{1}{2}\left(e^{\frac{s^{2}}{8}+s}\right)\right)^{78}
$$

